Redundancy in Gaussian random fields
ESAIM: Probability and Statistics, Tome 24 (2020), pp. 627-660.

In this paper, we introduce a notion of spatial redundancy in Gaussian random fields. This study is motivated by applications of the a contrario method in image processing. We define similarity functions on local windows in random fields over discrete or continuous domains. We derive explicit Gaussian asymptotics for the distribution of similarity functions when computed on Gaussian random fields. Moreover, for the special case of the squared L2 norm, we give non-asymptotic expressions in both discrete and continuous periodic settings. Finally, we present fast and accurate approximations of these non-asymptotic expressions using moment methods and matrix projections.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ps/2020010
Classification : 60F05, 60F15, 60G15, 60G60, 62H15, 62H35
Mots-clés : Random fields, spatial redundancy, central limit theorem, law of large numbers, eigenvalues approximation, moment methods
@article{PS_2020__24_1_627_0,
     author = {De Bortoli, Valentin and Desolneux, Agn\`es and Galerne, Bruno and Leclaire, Arthur},
     title = {Redundancy in {Gaussian} random fields},
     journal = {ESAIM: Probability and Statistics},
     pages = {627--660},
     publisher = {EDP-Sciences},
     volume = {24},
     year = {2020},
     doi = {10.1051/ps/2020010},
     mrnumber = {4170178},
     zbl = {1455.60037},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2020010/}
}
TY  - JOUR
AU  - De Bortoli, Valentin
AU  - Desolneux, Agnès
AU  - Galerne, Bruno
AU  - Leclaire, Arthur
TI  - Redundancy in Gaussian random fields
JO  - ESAIM: Probability and Statistics
PY  - 2020
SP  - 627
EP  - 660
VL  - 24
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2020010/
DO  - 10.1051/ps/2020010
LA  - en
ID  - PS_2020__24_1_627_0
ER  - 
%0 Journal Article
%A De Bortoli, Valentin
%A Desolneux, Agnès
%A Galerne, Bruno
%A Leclaire, Arthur
%T Redundancy in Gaussian random fields
%J ESAIM: Probability and Statistics
%D 2020
%P 627-660
%V 24
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2020010/
%R 10.1051/ps/2020010
%G en
%F PS_2020__24_1_627_0
De Bortoli, Valentin; Desolneux, Agnès; Galerne, Bruno; Leclaire, Arthur. Redundancy in Gaussian random fields. ESAIM: Probability and Statistics, Tome 24 (2020), pp. 627-660. doi : 10.1051/ps/2020010. http://www.numdam.org/articles/10.1051/ps/2020010/

[1] R.J. Adler, The geometry of random fields. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Ltd., Chichester (1981). | MR | Zbl

[2] R.J. Adler, G. Samorodnitsky and J.E. Taylor, Excursion sets of three classes of stable random fields. Adv. Appl. Probab. 42 (2010) 293–318. | DOI | MR | Zbl

[3] A. Baddeley, E. Rubak and R. Turner, Spatial Point Patterns: Methodology and Applications with R. Chapman and Hall/CRC Press, London (2015). | DOI | Zbl

[4] H. Biermé and A. Desolneux, On the perimeter of excursion sets of shot noise random fields. Ann. Probab. 44 (2016) 521–543. | DOI | MR | Zbl

[5] P. Billingsley, Probability and measure. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, third ed. A Wiley-Interscience Publication (1995). | MR | Zbl

[6] D.A. Bodenham and N.M. Adams, A comparison of efficient approximations for a weighted sum of chi-squared random variables. Stat. Comput. 26 (2016) 917–928. | DOI | MR | Zbl

[7] V.D. Bortoli, A. Desolneux, B. Galerne and A. Leclaire, Patch redundancy in images: A statistical testing framework and some applications. SIAM J. Imag. Sci. 12 (2019) 893–926. | DOI | MR | Zbl

[8] J. Bruna and S. Mallat, Multiscale Sparse Microcanonical Models. Preprint arXiv: (2018). | arXiv | MR

[9] A. Buades, B. Coll and J. Morel, A non-local algorithm for image denoising, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), 20-26 June 2005, San Diego, CA USA (2005) 60–65.

[10] M.J. Buckley and G. Eagleson, An approximation to the distribution of quadratic forms in normal random variables. Aust. J. Stat. 30A (1988) 150–159. | DOI | Zbl

[11] R.H. Chan, X.-Q. Jin and M.-C. Yeung, The circulant operator in the Banach algebra of matrices. Linear Algebra Appl. 149 (1991) 41–53. | DOI | MR | Zbl

[12] S.N. Chiu, D. Stoyan, W.S. Kendall and J. Mecke, Stochastic geometry and its applications. Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd., Chichester, third ed. (2013). | MR | Zbl

[13] P.G. Ciarlet, Introduction à l’analyse numérique matricielle et à l’optimisation. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris (1982). | MR | Zbl

[14] H. Cramér, Mathematical methods of statistics. Princeton Landmarks in Mathematics. Reprint ofthe 1946 original. Princeton University, Press, Princeton, NJ (1999). | MR | Zbl

[15] H. Cramer and H. Wold, Some theorems on distribution functions. J. London Math. Soc. 11 (1936) 290–294. | DOI | JFM | MR

[16] H. Cramér and M.R. Leadbetter, Stationary and related stochastic processes. Sample function properties and their applications, Reprint ofthe 1967 original. Dover Publications, Inc., Mineola, NY (2004). | MR

[17] A. Criminisi, P. Pérez and K. Toyama, Region filling and object removal by exemplar-based image inpainting, IEEE Trans. Image Process 13 (2004) 1200–1212. | DOI

[18] D.J. Daley, The definition of a multi-dimensional generalization of shot noise. J. Appl. Probability 8 (1971) 128–135. | DOI | MR | Zbl

[19] A.W. Davis, A differential equation approach to linear combinations of independent chi-squares. J. Am. Statist. Assoc. 72 (1977) 212–214. | DOI | MR | Zbl

[20] V. De Bortoli, A. Desolneux, A. Durmus, B. Galerne and A. Leclaire, Maximum entropy methods for texture synthesis: theory and practice. Preprint (2019). | arXiv | MR

[21] C.-A. Deledalle, L. Denis and F. Tupin, How to compare noisy patches? Patch similarity beyond Gaussian noise. Int. J. Comput. Vis. 99 (2012) 86–102. | DOI | MR | Zbl

[22] P. Diaconis and D. Freedman, On the statistics of vision: The julesz conjecture. J. Math. Psychol. 24 (1981) 112–138. | DOI | MR | Zbl

[23] A.A. Efros and T.K. Leung, Texture synthesis by non-parametric sampling, in ICCV IEEE International Conference on Computer Vision, Corfu, Greece, September (1999) 1033–1038.

[24] A.A. Efros and W.T. Freeman, Image quilting for texture synthesis and transfer, in Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001, Los Angeles, California, USA, August 12-17 (2001) 341–346.

[25] B. Galerne, Random fields of bounded variation and computation of their variation intensity. Adv. in Appl. Probab. 48 (2016) 947–971. | DOI | MR | Zbl

[26] B. Galerne, Y. Gousseau and J. Morel, Random phase textures: Theory and synthesis. IEEE Trans. Image Process. 20 (2011) 257–267. | DOI | MR | Zbl

[27] L.A. Gatys, A.S. Ecker and M. Bethge, Texture synthesis using convolutional neural networks, in Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada (2015) 262–270.

[28] R.G. Ghanem and P.D. Spanos, Stochastic finite elements: a spectral approach. Springer-Verlag, New York (1991). | MR | Zbl

[29] P. Hall, Chi squared approximations to the distribution of a sum of independent random variables. Ann. Probab. 11 (1983) 1028–1036. | DOI | MR | Zbl

[30] K. He and J. Sun, Image completion approaches using the statistics of similar patches. IEEE Trans. Pattern Anal. Mach. Intell. 36 (2014) 2423–2435. | DOI

[31] J.P. Imhof, Computing the distribution of quadratic forms in normal Variables. Biometrika 48 (1961) 419–426. | DOI | MR | Zbl

[32] L. Isserlis, On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika 12 (1918) 134–139. | DOI

[33] A.V. Ivanov and N.N. Leonenko, Statistical analysis of random fields. Vol. 28 of Mathematics and its Applications (Soviet Series). With a preface by A.V. Skorokhod, Translated from the Russian by A.I. Kochubinskiĭ. Kluwer Academic Publishers Group, Dordrecht (1989). | MR | Zbl

[34] J. Jain and A. Jain, Displacement measurement and its application in interframe image coding. IEEE Trans. Commun.29 (1981) 1799–1808. | DOI

[35] S. Janson, Normal convergence by higher semi-invariants with applications to sums of dependent random variables and random graphs. Ann. Probab. 16 (1988) 305–312. | DOI | MR | Zbl

[36] B. Julesz, Textons, the elements of texture perception, and their Interactions. Nature 290 (1981) 91. | DOI

[37] B. Julesz, Visual pattern discrimination. IRE Trans. Inf. Theory 8 (1962) 84–92. | DOI

[38] S. Kotz, N.L. Johnson and D.W. Boyd, Series representations of distributions of quadratic forms in normal variables. II. Non-central case. Ann. Math. Statist. 38 (1967) 838–848. | DOI | MR | Zbl

[39] M. Lebrun, A. Buades and J. Morel, A Nonlocal Bayesian Image Denoising Algorithm. SIAM J. Imag. Sci. 6 (2013) 1665–1688. | DOI | MR | Zbl

[40] A. Leclaire, Champs a phase aléatoire et champs gaussiens pour la mesure de netteté d’images et la synthese rapide de textures. Ph.D. thesis, Université Paris Descartes (2015) 2015USPCB041.

[41] E. Levina and P.J. Bickel, Texture synthesis and nonparametric resampling of random fields. Ann. Statist. 34 (2006) 1751–1773. | DOI | MR | Zbl

[42] G. Lindgren, Stationary stochastic processes. Theory and applications. Chapman & Hall/CRC Texts in Statistical Science Series. CRC Press, Boca Raton, FL (2013). | MR | Zbl

[43] Y. Lu, S. Zhu and Y.N. Wu, Learning FRAME models using CNN filters, in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12–17, 2016, Phoenix, Arizona, USA. (2016) 1902–1910.

[44] F. Móricz, U. Stadtmüller and M. Thalmaier, Strong laws for blockwise m-dependent random fields. J. Theoret. Probab. 21 (2008) 660–671. | DOI | MR | Zbl

[45] A. Newson, A. Almansa, Y. Gousseau and S. Ladjal, Taking Apart Autoencoders: How do They Encode Geometric Shapes ?. working paper orpreprint (2018).

[46] S.D. Oman and S. Zacks, A mixture approximation to the distribution of a weighted sum of chi-squared variables. J. Stat. Comput. Simul. 13 (1981) 215–224. | DOI | Zbl

[47] J. Portilla and E.P. Simoncelli, A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40 (2000) 49–70. | DOI | Zbl

[48] J. Potthoff, Sample properties of random fields. II. Continuity. Commun. Stoch. Anal. 3 (2009) 331–348. | MR | Zbl

[49] L. Raad, A. Desolneux and J. Morel, A conditional multiscale locally gaussian texture synthesis algorithm. J. Math. Imag. Vis. 56 (2016) 260–279. | DOI | MR | Zbl

[50] J. Rice, On generalized shot noise. Adv. Appl. Probab 9 (1977) 553–565. | DOI | MR | Zbl

[51] S.O. Rice, Mathematical analysis of random noise. Bell Syst. Tech J. 23 (1944) 282–332. | DOI | MR | Zbl

[52] R. Schneider and W. Weil, Stochastic and integral geometry. Probability and its Applications (New York). Springer-Verlag, Berlin (2008). | MR | Zbl

[53] U. Stadtmüller and L.V. Thanh, On the strong limit theorems for double arrays of blockwise M-dependent random variables. Acta Math. Sin. (Engl. Ser.) 27 (2011) 1923–1934. | DOI | MR | Zbl

[54] M. Unser, P. Thévenaz and L.P. Yaroslavsky, Convolution-based interpolation for fast, high-quality rotation of images, IEEE Trans. Image Process. 4 (1995) 1371–1381. | DOI

[55] J.J. Van Wijk, Spot noise texture synthesis for data visualization, in Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1991, Providence, RI, USA, April 27–30 (1991) 309–318.

[56] A.T.A. Wood, An f approximation to the distribution of a linear combination of chi-squared variables. Commun. Stat. Simul. Comput 18 (1989) 1439–1456. | DOI | Zbl

[57] G. Xia, S. Ferradans, G. Peyré and J. Aujol, Synthesizing and mixing stationary gaussian texture models. SIAM J. Imag. Sci. 7 (2014) 476–508. | DOI | MR | Zbl

[58] J.I. Yellott, Implications of triple correlation uniqueness for texture statistics and the julesz conjecture. J. Opt. Soc. Am. A 10 (1993) 777–793. | DOI

Cité par Sources :