We prove a simple criterion of exponential tightness for sequences of Gaussian r.v.’s with values in a separable Banach space from which we deduce a general result of Large Deviations which allows easily to obtain LD estimates in various situations.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ps/2020003
Mots-clés : Gaussian probabilities, large deviations
@article{PS_2020__24_1_113_0, author = {Baldi, Paolo}, title = {Tightness and exponential tightness of {Gaussian} probabilities}, journal = {ESAIM: Probability and Statistics}, pages = {113--126}, publisher = {EDP-Sciences}, volume = {24}, year = {2020}, doi = {10.1051/ps/2020003}, mrnumber = {4071318}, zbl = {1434.60082}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2020003/} }
TY - JOUR AU - Baldi, Paolo TI - Tightness and exponential tightness of Gaussian probabilities JO - ESAIM: Probability and Statistics PY - 2020 SP - 113 EP - 126 VL - 24 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2020003/ DO - 10.1051/ps/2020003 LA - en ID - PS_2020__24_1_113_0 ER -
Baldi, Paolo. Tightness and exponential tightness of Gaussian probabilities. ESAIM: Probability and Statistics, Tome 24 (2020), pp. 113-126. doi : 10.1051/ps/2020003. http://www.numdam.org/articles/10.1051/ps/2020003/
[1] Grandes déviations et applications, Eighth Saint Flour Probability Summer School – 1978, Saint Flour, 1978. Vol. 774 of Lecture Notes in Math. Springer, Berlin (1980), 1–176. | MR | Zbl
,[2] Large deviations and stochastic homogenization. Ann. Mat. Pura Appl. 151 (1988) 161–177. | MR | Zbl
,[3] Convergence of probability measures. John Wiley & Sons, Inc., New York-London-Sydney (1968). | MR | Zbl
,[4] Upper bounds for large deviations of dependent random vectors. Z. Wahrsch. Verw. Gebiete 69 (1985) 551–565. | MR | Zbl
[5] Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 (1999) 177–214. | MR | Zbl
and ,[6] Large deviations techniques and applications. Vol. 38 of Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin (2010). | MR | Zbl
and ,[7] Large deviations. Vol. 137 of Pure and Applied Mathematics. Academic Press, Inc., Boston, MA (1989). | MR | Zbl
and ,[8] Asymptotic evaluation of certain Markov process expectations for large time. III. Commun. Pure Appl. Math. 29 (1976) 389–461. | MR | Zbl
and ,[9] Large deviations for a general class of random vectors. Ann. Probab. 12 (1984) 1–12. | MR | Zbl
,[10] Intégrabilité des vecteurs gaussiens. C. R. Acad. Sci. Paris Sér. A-B 270 (1970) A1698–A1699. | MR | Zbl
,[11] Regularité des trajectoires des fonctions aléatoires gaussiennes. École d’Été de Probabilités de Saint-Flour, IV-1974. Vol. 480 of Lecture Notes in Math. Springer, Berlin (1975) 1–96. | MR | Zbl
,[12] On large deviations from an invariant measure. Teor. Verojatnost. i Primenen. 22 (1977) 27–42. | MR | Zbl
,[13] Some asymptotic formulas for Wiener integrals. Trans. Am. Math. Soc. 125 (1966) 63–85. | DOI | MR | Zbl
,Cité par Sources :
The author acknowledges the MIUR Excellence Department Project awarded to the Dipartimento di Matematica, Università di Roma “Tor Vergata”, CUP E83C18000100006.