Exit-time of mean-field particles system
ESAIM: Probability and Statistics, Tome 24 (2020), pp. 399-407.

The current article is devoted to the study of a mean-field system of particles. The question that we are interested in is the behaviour of the exit-time of the first particle (and the one of any particle) from a domain $$ on ℝ$$ as the diffusion coefficient goes to 0. We establish a Kramers’ type law. In other words, we show that the exit-time is exponentially equivalent to $$, H$$ being the exit-cost. We also show that this exit-cost converges to some quantity H.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ps/2019028
Classification : 60F10, 60J60, 60H10
Mots-clés : Exit-problem, large deviations, interacting particle systems, mean-field systems
@article{PS_2020__24_1_399_0,
     author = {Tugaut, Julian},
     title = {Exit-time of mean-field particles system},
     journal = {ESAIM: Probability and Statistics},
     pages = {399--407},
     publisher = {EDP-Sciences},
     volume = {24},
     year = {2020},
     doi = {10.1051/ps/2019028},
     mrnumber = {4153635},
     zbl = {1455.60047},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2019028/}
}
TY  - JOUR
AU  - Tugaut, Julian
TI  - Exit-time of mean-field particles system
JO  - ESAIM: Probability and Statistics
PY  - 2020
SP  - 399
EP  - 407
VL  - 24
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2019028/
DO  - 10.1051/ps/2019028
LA  - en
ID  - PS_2020__24_1_399_0
ER  - 
%0 Journal Article
%A Tugaut, Julian
%T Exit-time of mean-field particles system
%J ESAIM: Probability and Statistics
%D 2020
%P 399-407
%V 24
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2019028/
%R 10.1051/ps/2019028
%G en
%F PS_2020__24_1_399_0
Tugaut, Julian. Exit-time of mean-field particles system. ESAIM: Probability and Statistics, Tome 24 (2020), pp. 399-407. doi : 10.1051/ps/2019028. http://www.numdam.org/articles/10.1051/ps/2019028/

[1] A. Dembo and O. Zeitouni, Stochastic Modelling and Applied Probability, in Large deviations techniques and applications, Vol. 38. Corrected reprint of the second (1998) edn., Springer-Verlag, Berlin (2010). | MR | Zbl

[2] M.I. Freidlin and A.D. Wentzell, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], in Random perturbations of dynamical systems, Vol. 260. 2nd edn., Translated fromthe 1979 Russian original by Joseph Szücs. Springer-Verlag, New York (1998). | MR | Zbl

[3] S. Herrmann and J. Tugaut, Mean-field limit versus small-noise limit for some interacting particle systems. Commun. Stoch. Anal. 10 (2016) 4. | MR

[4] S. Herrmann, P. Imkeller and D. Peithmann, Large deviations and a Kramers’ type law for self-stabilizing diffusions. Ann. Appl. Probab. 18 (2008) 1379–1423. | DOI | MR | Zbl

[5] S. Méléard, Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models, in Probabilistic models for nonlinear partial differential equations (Montecatini Terme, 1995), Vol. 1627 of Lecture Notes in Mathematics, Springer, Berlin (1996) 42–95. | DOI | MR | Zbl

[6] A.-S. Sznitman, Topics in propagation of chaos, In École d’Été de Probabilités de Saint-Flour XIX—1989, Vol. 1464 of Lecture Notes in Mathematics, Springer, Berlin (1991) 165–251. | MR | Zbl

[7] J. Tugaut, Exit problem of McKean-Vlasov diffusions in convex landscapes, Electron. J. Probab. 17 (2012) 1–26. | DOI | MR | Zbl

Cité par Sources :