In this paper, we propose a perfect simulation algorithm for the Exponential Random Graph Model, based on the Coupling from the past method of Propp and Wilson (1996). We use a Glauber dynamics to construct the Markov Chain and we prove the monotonicity of the ERGM for a subset of the parametric space. We also obtain an upper bound on the running time of the algorithm that depends on the mixing time of the Markov chain.
Mots-clés : Exponential Random Graph, perfect simulation, coupling from the past, MCMC, Glauber dynamics
@article{PS_2020__24_1_138_0, author = {Cerqueira, Andressa and Garivier, Aur\'elien and Leonardi, Florencia}, title = {A note on perfect simulation for {Exponential} {Random} {Graph} {Models}}, journal = {ESAIM: Probability and Statistics}, pages = {138--147}, publisher = {EDP-Sciences}, volume = {24}, year = {2020}, doi = {10.1051/ps/2019024}, mrnumber = {4071317}, zbl = {1434.60277}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2019024/} }
TY - JOUR AU - Cerqueira, Andressa AU - Garivier, Aurélien AU - Leonardi, Florencia TI - A note on perfect simulation for Exponential Random Graph Models JO - ESAIM: Probability and Statistics PY - 2020 SP - 138 EP - 147 VL - 24 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2019024/ DO - 10.1051/ps/2019024 LA - en ID - PS_2020__24_1_138_0 ER -
%0 Journal Article %A Cerqueira, Andressa %A Garivier, Aurélien %A Leonardi, Florencia %T A note on perfect simulation for Exponential Random Graph Models %J ESAIM: Probability and Statistics %D 2020 %P 138-147 %V 24 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2019024/ %R 10.1051/ps/2019024 %G en %F PS_2020__24_1_138_0
Cerqueira, Andressa; Garivier, Aurélien; Leonardi, Florencia. A note on perfect simulation for Exponential Random Graph Models. ESAIM: Probability and Statistics, Tome 24 (2020), pp. 138-147. doi : 10.1051/ps/2019024. http://www.numdam.org/articles/10.1051/ps/2019024/
[1] Mixing time of exponential random graphs. Ann. Appl. Probab. 21 (2011) 2146–2170. | MR | Zbl
, and ,[2] A perfect sampling method for exponential family random graph models. J. Math. Sociol. 42 (2018) 17–36. | MR | Zbl
,[3] A test of hypotheses for random graph distributions built from EEG data. IEEE Trans. Netw. Sci. Eng. (2017). | MR
, , and ,[4] et al., Estimating and understanding exponential random graph models. Ann. Stat. 41 (2013) 2428–2461. | MR | Zbl
,[5] Constrained Monte–Carlo maximum likelihood for dependent data. J. Roy. Stat. Soc. Ser. B (Methodological) 54, (1992) 657–699. | MR
and ,[6] Markov chains and mixing times. American Mathematical Soc. (2009). | MR | Zbl
, and ,[7] Random graph models of social networks. Proc. Natl. Acad. Sci. 99 (2002) 2566–2572. | Zbl
, and ,[8] Exact sampling with coupled markov chains and applications to statistical mechanics. Random Struct. Algor. 9 (1996) 223–252. | MR | Zbl
and ,[9] An introduction to exponential random graph (p*) models for social networks. Social Netw. 29 (2007) 173–191.
, , and ,[10] Markov chain Monte Carlo estimation of exponential random graph models. J. Soc. Struct. 3 (2002) 1–40.
,[11] Pseudolikelihood estimation for social networks. J. Am. Stat. Assoc. 85 (1990) 204–212. | DOI | MR
and ,Cité par Sources :