The Berry-Esseen bound of a wavelet estimator in non-randomly designed nonparametric regression model based on ANA errors
ESAIM: Probability and Statistics, Tome 24 (2020), pp. 21-38.

Consider the nonparametric regression model Y$$ = g(t$$) + ε$$, i = 1, 2, …, n,  n ≥ 1, where ε$$,  1 ≤ in, are asymptotically negatively associated (ANA, for short) random variables. Under some appropriate conditions, the Berry-Esseen bound of the wavelet estimator of g(⋅) is established. In addition, some numerical simulations are provided in this paper. The results obtained in this paper generalize some corresponding ones in the literature.

DOI : 10.1051/ps/2019017
Classification : 62E20, 62G05
Mots-clés : Nonparametric regression model, asymptotically negatively associated random variables, wavelet estimator, Berry-Esseen bound
@article{PS_2020__24_1_21_0,
     author = {Tang, Xufei and Wang, Xuejun and Wu, Yi and Zhang, Fei},
     title = {The {Berry-Esseen} bound of a wavelet estimator in non-randomly designed nonparametric regression model based on {ANA} errors},
     journal = {ESAIM: Probability and Statistics},
     pages = {21--38},
     publisher = {EDP-Sciences},
     volume = {24},
     year = {2020},
     doi = {10.1051/ps/2019017},
     mrnumber = {4053000},
     zbl = {1440.62072},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2019017/}
}
TY  - JOUR
AU  - Tang, Xufei
AU  - Wang, Xuejun
AU  - Wu, Yi
AU  - Zhang, Fei
TI  - The Berry-Esseen bound of a wavelet estimator in non-randomly designed nonparametric regression model based on ANA errors
JO  - ESAIM: Probability and Statistics
PY  - 2020
SP  - 21
EP  - 38
VL  - 24
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2019017/
DO  - 10.1051/ps/2019017
LA  - en
ID  - PS_2020__24_1_21_0
ER  - 
%0 Journal Article
%A Tang, Xufei
%A Wang, Xuejun
%A Wu, Yi
%A Zhang, Fei
%T The Berry-Esseen bound of a wavelet estimator in non-randomly designed nonparametric regression model based on ANA errors
%J ESAIM: Probability and Statistics
%D 2020
%P 21-38
%V 24
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2019017/
%R 10.1051/ps/2019017
%G en
%F PS_2020__24_1_21_0
Tang, Xufei; Wang, Xuejun; Wu, Yi; Zhang, Fei. The Berry-Esseen bound of a wavelet estimator in non-randomly designed nonparametric regression model based on ANA errors. ESAIM: Probability and Statistics, Tome 24 (2020), pp. 21-38. doi : 10.1051/ps/2019017. http://www.numdam.org/articles/10.1051/ps/2019017/

[1] A. Antoniadis, G. Gregoire and I.W. Mckeague, Wavelet methods for curve estimation. J. Am. Stat. Assoc. 89 (1994) 1340–1352. | DOI | MR | Zbl

[2] R.C. Bradley, On the spectral density and asymptotic normality of weakly dependent random fields. J. Theor. Probab. 5 (1992) 355–373. | DOI | MR | Zbl

[3] Z. Cai and G.G. Roussas, Berry-Esseen bounds for smooth estimator of a distribution function under association. J. Nonparam. Stat. 11 (1999) 79–106. | DOI | MR | Zbl

[4] Z.Y. Chen, H.B. Wang and X.J. Wang, The consistency for the estimator of nonparametric regression model based on martingale difference errors. Stat. Papers 57 (2016) 451–469. | DOI | MR | Zbl

[5] L.W. Ding and Y.M. Li, The Berry-Esseen bounds of wavelet estimator for regression model whose errors form a linear process with a ρ-mixing. J. Inequal. Appl. 2016 (2016) 107. | DOI | MR | Zbl

[6] A.A. Georgiev, Local Properties of Function Fitting Estimates with Application to System Identification. Mathematical Statistics and Applications, Vol. B. Reidel, Dordrecht, Bad Tatzmannsdorf 1983 (1985) 141–151. | DOI | MR | Zbl

[7] A.A. Georgiev, Consistent nonparametric multiple regression: the fixed design case. J. Multivar. Anal. 25 (1988) 100–110. | DOI | MR | Zbl

[8] H.W. Huang, M.M. Yang and Y.J. Jiang, Some strong convergence properties for arrays of rowwise ANA random variables. J. Inequal. Appl. 2016 (2016) 303. | DOI | MR | Zbl

[9] K. Joag-Dev and F. Proschan, Negative association of random variables with applications. Ann. Stat. 11 (1983) 286–295. | DOI | MR | Zbl

[10] M. Ledoux and M. Talagrand, Probability in Banach Space. Springer, Berlin (1991). | DOI | MR | Zbl

[11] Y.M. Li and J.H. Guo, Asymptotic normality of wavelet estimator for strong mixing errors. J. Kor. Stat. Soc. 38 (2009) 383–390. | DOI | MR | Zbl

[12] H.Y. Liang, J. Baek, Berry-Esseen bounds for density estimates under NA assumption. Metrika 68 (2008) 305–322. | DOI | MR | Zbl

[13] H.Y. Liang and G.L. Fan, Berry-Esseen type bounds of estimators in a semiparametric model with linear process errors. J. Multivar. Anal. 100 (2009) 1–15. | DOI | MR | Zbl

[14] H.Y. Liang and L.L. Li, A Berry-Esseen type bound of regression estimator based on linear process errors. J. Korean Math. Soc. 45 (2008) 1753–1767. | DOI | MR | Zbl

[15] X.D. Liu and J.X. Liu, Moments of the maximum of normed partial sums of ρ -mixing random variables. Appl. Math. Ser B 24 (2009) 355–360. | DOI | MR | Zbl

[16] Y.M. Li, C.D. Wei and G.D. Xing, Berry-Esseen bounds for wavelet estimator in a regression with linear process errors. Stat. Probab. Lett. 81 (2011) 103–111. | DOI | MR | Zbl

[17] V.V. Petrov, Limit Theorems of Probability Theory: Sequences of Independent Random Variables. Oxford University Press Inc., New York (1995). | MR | Zbl

[18] G.G. Roussas, L.T. Tran and D.A. Ioannides, Fixed design regression for time series: asymptotic normality. J. Multivar. Anal. 40 (1992) 262–291. | DOI | MR | Zbl

[19] A.T. Shen, Complete convergence for weighted sums of END random variables and its application to nonparametric regression models. J. Nonparamet. Stat. 28 (2016) 702–715. | DOI | MR | Zbl

[20] Q.Y. Wu and Y.Y. Jiang, Some limiting behavior for asymptotically negative associated random variables. Probab. Eng. Inf. Sci. 32 (2018) 58–66. | DOI | MR | Zbl

[21] J.F. Wang and F.B. Lu, Inequalities of maximum partial sums and weak convergence for a class of weak dependent random variables. Acta Math. Sin. 22 (2006) 693–700. | DOI | MR | Zbl

[22] X.J. Wang and Z.Y. Si, Complete consistency of the estimator of nonparametric regression model under ND sequence. Stat. Papers 56 (2015) 585–596. | DOI | MR | Zbl

[23] J.F. Wang and L.X. Zhang, A Berry-Esseen theorem for weakly negatively dependent random variables and its applications. Acta Math. Hung. 110 (2006) 293–308. | DOI | MR | Zbl

[24] J.F. Wang and L.X. Zhang, A Berry-Esseen theorem and a law of the iterated logarithm for asymptotically negatively associated sequences. Acta Math. Sin. 23 (2007) 127–136. | DOI | MR | Zbl

[25] L.G. Xue, Berry-Esseen bound of an estimate of error variance in a semiparametric regression model. Acta Math. Sin. 48 (2005) 157–70. | MR | Zbl

[26] S.C. Yang, Uniformly asymptotic normality of the regression weighted estimator for negatively associated samples. Stat. Prob. Lett. 62 (2003) 101–110. | DOI | MR | Zbl

[27] L.X. Zhang, A functional central limit theorem for asymptotically negatively dependent random fields. Acta Math. Hungar. 86 (2000) 237–259. | DOI | MR | Zbl

[28] L.X. Zhang, Central limit theorems for asymptotically negatively associated random fields. Acta Math. Sin. 16 (2000) 691–710. | DOI | MR | Zbl

[29] X.C. Zhou and J.G. Lin, Asymptotic properties of wavelet estimators in semiparametric regression models under dependent errors. J. Multivar. Anal. 122 (2013) 251–270. | DOI | MR | Zbl

[30] L.X. Zhang and X.Y. Wang, Convergence rates in the strong laws of asymptotically negatively associated random fields. Appl. Math. A 14 (1999) 406–416. | MR | Zbl

Cité par Sources :

Supported by the National Natural Science Foundation of China (11671012, 11871072, 11701004, 11701005), the Natural Science Foundation of Anhui Province (1808085QA03, 1908085QA01, 1908085QA07), the Research Project of Chaohu University (XLZ-201903, XLY-201905) and the Project on Reserve Candidates for Academic and Technical Leaders of Anhui Province (2017H123).