The 1D Schrödinger equation with a spacetime white noise: the average wave function
ESAIM: Probability and Statistics, Tome 23 (2019), pp. 338-349.

For the 1D Schrödinger equation with a mollified spacetime white noise, we show that the average wave function converges to the Schrödinger equation with an effective potential after an appropriate renormalization.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2019010
Classification : 35R60, 60H15, 35Q40
Mots-clés : Random Schrödinger equation, renormalization, path integral
Gu, Yu 1

1
@article{PS_2019__23__338_0,
     author = {Gu, Yu},
     title = {The {1D} {Schr\"odinger} equation with a spacetime white noise: the average wave function},
     journal = {ESAIM: Probability and Statistics},
     pages = {338--349},
     publisher = {EDP-Sciences},
     volume = {23},
     year = {2019},
     doi = {10.1051/ps/2019010},
     zbl = {1418.35392},
     mrnumber = {3963531},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2019010/}
}
TY  - JOUR
AU  - Gu, Yu
TI  - The 1D Schrödinger equation with a spacetime white noise: the average wave function
JO  - ESAIM: Probability and Statistics
PY  - 2019
SP  - 338
EP  - 349
VL  - 23
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2019010/
DO  - 10.1051/ps/2019010
LA  - en
ID  - PS_2019__23__338_0
ER  - 
%0 Journal Article
%A Gu, Yu
%T The 1D Schrödinger equation with a spacetime white noise: the average wave function
%J ESAIM: Probability and Statistics
%D 2019
%P 338-349
%V 23
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2019010/
%R 10.1051/ps/2019010
%G en
%F PS_2019__23__338_0
Gu, Yu. The 1D Schrödinger equation with a spacetime white noise: the average wave function. ESAIM: Probability and Statistics, Tome 23 (2019), pp. 338-349. doi : 10.1051/ps/2019010. http://www.numdam.org/articles/10.1051/ps/2019010/

[1] R. Allez and K. Chouk, The continuous Anderson Hamiltonian in dimension two. Preprint (2015). | arXiv

[2] G. Bal, T. Komorowski and L. Ryzhik, Asymptotics of the solutions of the random Schrödinger equation. Arch. Ratl. Mech. Analy. 200 (2011) 613–664. | DOI | MR | Zbl

[3] A. Chandra and H. Shen, Moment bounds for spdes with non-Gaussian fields and application to the Wong-Zakai problem. Electr. J. Probab. 22 (2017) 1–32. | MR | Zbl

[4] T. Chen, T. Komorowski and L. Ryzhik, The weak coupling limit for the random Schrödinger equation: the average wave function. Arch. Ratl. Mech. Anal. 227 (2018) 387–422. | DOI | MR | Zbl

[5] A. Debussche and J. Martin, Solution to the stochastic Schrödinger equation on the full space. Preprint (2017). | arXiv | MR

[6] A. Debussche and H. Weber, The Schrödinger equation with spatial white noise potential. Elect. J. Prob. 23 (2018) 1–16. | MR | Zbl

[7] L. Erdős and H.-T. Yau, Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation. Commun. Pure Appl. Math. 53 (2000) 667–735. | DOI | MR | Zbl

[8] S.N. Ethier and T.G. Kurtz, Vol. 2282 Markov processes: characterization and convergence. John Wiley & Sons (1986). | DOI | MR | Zbl

[9] Y. Gu and L. Ryzhik, The random Schrödinger equation: Homogenization in time-dependent potentials. Multisc. Model. Simul. 14 (2016) 323–363. | DOI | MR | Zbl

[10] Y. Gu and L.-C. Tsai, Another look into the Wong-Zakai theorem for stochastic heat equation. To appear Ann. Appl. Prob. (2019). | MR | Zbl

[11] Y. Gu, T. Komorowski and L. Ryzhik, The Schrödinger equation with spatial white noise: the average wave function. J. Funct. Anal. 274 (2018) 2113–2138. | DOI | MR | Zbl

[12] M. Gubinelli, B. Ugurcan and I. Zachhuber, Semilinear evolution equations for the Anderson Hamiltonian in two and three dimensions. Preprint (2018). | arXiv | MR

[13] M. Hairer and C. Labbé, Multiplicative stochastic heat equations on the whole space. J. Eur. Math. Soc. 20 (2018) 1005–1054. | DOI | MR | Zbl

[14] M. Hairer and É. Pardoux, A Wong-Zakai theorem for stochastic PDEs. J. Math. Soc. Jpn. 67 (2015) 1551–1604. | DOI | MR | Zbl

[15] T. Komorowski and L. Ryzhik, Long time energy transfer in the random Schrödinger equation. Commun. Math. Phys. 329 (2014) 1131–1170. | DOI | MR | Zbl

[16] C. Labbé, The continuous Anderson hamiltonian in d ≤ 3. Preprint (2018). | arXiv | MR

[17] D. Nualart, Vol. 1995 of The Malliavin calculus and related topics. Springer  (2006). | Zbl

[18] H. Spohn, Derivation of the transport equation for electrons moving through random impurities. J. Stat. Phys. 17 (1977) 385–412. | DOI | MR | Zbl

[19] N. Zhang and G. Bal, Convergence to SPDE of the Schrödinger equation with large, random potential. Commun. Math. Sci. 12 (2014) 825–841. | DOI | MR | Zbl

Cité par Sources :