Galton–Watson and branching process representations of the normalized Perron–Frobenius eigenvector
ESAIM: Probability and Statistics, Tome 23 (2019), pp. 797-802.

Let A be a primitive matrix and let λ be its Perron–Frobenius eigenvalue. We give formulas expressing the associated normalized Perron–Frobenius eigenvector as a simple functional of a multitype Galton–Watson process whose mean matrix is A, as well as of a multitype branching process with mean matrix e$$. These formulas are generalizations of the classical formula for the invariant probability measure of a Markov chain.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2019007
Classification : 60J80
Mots-clés : Galton–Watson, branching process, Perron–Frobenius
Cerf, Raphaël 1 ; Dalmau, Joseba 1

1
@article{PS_2019__23__797_0,
     author = {Cerf, Rapha\"el and Dalmau, Joseba},
     title = {Galton{\textendash}Watson and branching process representations of the normalized {Perron{\textendash}Frobenius} eigenvector},
     journal = {ESAIM: Probability and Statistics},
     pages = {797--802},
     publisher = {EDP-Sciences},
     volume = {23},
     year = {2019},
     doi = {10.1051/ps/2019007},
     mrnumber = {4045545},
     zbl = {1506.60091},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2019007/}
}
TY  - JOUR
AU  - Cerf, Raphaël
AU  - Dalmau, Joseba
TI  - Galton–Watson and branching process representations of the normalized Perron–Frobenius eigenvector
JO  - ESAIM: Probability and Statistics
PY  - 2019
SP  - 797
EP  - 802
VL  - 23
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2019007/
DO  - 10.1051/ps/2019007
LA  - en
ID  - PS_2019__23__797_0
ER  - 
%0 Journal Article
%A Cerf, Raphaël
%A Dalmau, Joseba
%T Galton–Watson and branching process representations of the normalized Perron–Frobenius eigenvector
%J ESAIM: Probability and Statistics
%D 2019
%P 797-802
%V 23
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2019007/
%R 10.1051/ps/2019007
%G en
%F PS_2019__23__797_0
Cerf, Raphaël; Dalmau, Joseba. Galton–Watson and branching process representations of the normalized Perron–Frobenius eigenvector. ESAIM: Probability and Statistics, Tome 23 (2019), pp. 797-802. doi : 10.1051/ps/2019007. http://www.numdam.org/articles/10.1051/ps/2019007/

[1] R. Cerf and J. Dalmau, A Markov chain representation of the normalized Perron-Frobenius eigenvector. Electron. Commun. Probab. 22 (2017) 52. | DOI | MR | Zbl

[2] T.E. Harris, The Theory of Branching Processes. Springer-Verlag, Berlin, Prentice-Hall, Inc., Englewood Cliffs, NJ (1963). | DOI | MR | Zbl

[3] E. Seneta, Nonnegative Matrices and Markov Chains, 2nd edn. Springer Series in Statistics. Springer-Verlag, New York (1981). | MR | Zbl

Cité par Sources :