Wald Statistics in high-dimensional PCA
ESAIM: Probability and Statistics, Tome 23 (2019), pp. 662-671.

In this study, we consider PCA for Gaussian observations X1, …, X$$ with covariance Σ = ∑$$λ$$P$$ in the ’effective rank’ setting with model complexity governed by r(Σ) ≔ tr(Σ)∕∥Σ∥. We prove a Berry-Essen type bound for a Wald Statistic of the spectral projector P ^ r . This can be used to construct non-asymptotic goodness of fit tests and confidence ellipsoids for spectral projectors P$$. Using higher order pertubation theory we are able to show that our Theorem remains valid even when 𝐫(Σ)n.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2019002
Classification : 62H25, 62G20, 62F25
Mots-clés : PCA, spectral projectors, central limit theorem, confidence sets, goodness of fit tests
Löffler, Matthias 1

1
@article{PS_2019__23__662_0,
     author = {L\"offler, Matthias},
     title = {Wald {Statistics} in high-dimensional {PCA}},
     journal = {ESAIM: Probability and Statistics},
     pages = {662--671},
     publisher = {EDP-Sciences},
     volume = {23},
     year = {2019},
     doi = {10.1051/ps/2019002},
     mrnumber = {4011571},
     zbl = {1507.62260},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2019002/}
}
TY  - JOUR
AU  - Löffler, Matthias
TI  - Wald Statistics in high-dimensional PCA
JO  - ESAIM: Probability and Statistics
PY  - 2019
SP  - 662
EP  - 671
VL  - 23
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2019002/
DO  - 10.1051/ps/2019002
LA  - en
ID  - PS_2019__23__662_0
ER  - 
%0 Journal Article
%A Löffler, Matthias
%T Wald Statistics in high-dimensional PCA
%J ESAIM: Probability and Statistics
%D 2019
%P 662-671
%V 23
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2019002/
%R 10.1051/ps/2019002
%G en
%F PS_2019__23__662_0
Löffler, Matthias. Wald Statistics in high-dimensional PCA. ESAIM: Probability and Statistics, Tome 23 (2019), pp. 662-671. doi : 10.1051/ps/2019002. http://www.numdam.org/articles/10.1051/ps/2019002/

[1] Y. Amemiya and T.W. Anderson, Asymptotic Chi-square tests for a large class of factor analysis models. Ann. Statist. 18 (1990) 1453–1463 | DOI | MR | Zbl

[2] T.W. Anderson, Asymptotic theory for principal component analysis. Ann. Math. Statist. 34 (1963) 122–148 | DOI | MR | Zbl

[3] P. Bentler, A testing method for covariance structure analysis. In Vol. 24 of IMS Lecture Notes Monogr. Ser., Inst. Math. Statist., Hayward, CA (1994) 123–136 | DOI | MR

[4] Q. Berthet and P. Rigollet, Optimal detection of sparse principal components in high dimension. Ann. Statist. 41 (2013) 1780–1815 | DOI | MR | Zbl

[5] T. Cai, Z. Ma and Y. Wu, Sparse PCA: optimal rates and adaptive estimation. Ann. Statist. 41 (2013) 3074–3110 | MR | Zbl

[6] M.L. Eaton, Multivariate Statistics: A Vector Space Approach. John Wiley & Sons, Inc., New York (1983) | MR | Zbl

[7] C. Gao and H. Zhou, Rate-optimal posterior contraction for sparse PCA. Ann. Statist. 43 (2015) 785–818 | MR | Zbl

[8] I.M. Johnstone, On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29 (2001) 295–327 | DOI | MR | Zbl

[9] I.M. Johnstone and A.Y. Lu, On consistency and sparsity for principal components analysis in high dimensions. J. Am. Statist. Assoc. 104 (2009) 682–693 | DOI | MR | Zbl

[10] V. Koltchinskii and K. Lounici, Asymptotics and concentration bounds for bilinear forms of spectral projectors of sample covariance. Ann. Inst. Henri Poincaré Probab. Stat. 52 (2016) 1976–2013 | DOI | MR | Zbl

[11] V. Koltchinskii and K. Lounici, Concentration inequalities and moment bounds for sample covariance operators. Bernoulli 23 (2017) 110–133 | DOI | MR | Zbl

[12] V. Koltchinskii and K. Lounici, Normal approximation and concentration of spectral projectors of sample covariance. Ann. Statist. 45 (2017) 121–157 | DOI | MR | Zbl

[13] V. Koltchinskii and K. Lounici, New asymptotic results in principal component analysis. Sankhya A 79 (2017) 254–297 | DOI | MR | Zbl

[14] V. Koltchinskii, M. Löffler and R. Nickl, Efficient estimation of linear functionals of principal components. Preprint at (2017) | arXiv | MR

[15] B. Nadler, Finite sample approximation results for principal component analysis: a matrix perturbation approach. Ann. Statist. 36 (2008) 2791–2817 | DOI | MR | Zbl

[16] A. Naumov, V. Spokoiny and V. Ulyanov, Confidence sets for Spectral projectors of covariance matrices. Dokl. Math. 98 (2018) 511–514 | DOI | MR | Zbl

[17] D. Passemier, Z. Li and J. Yao, On estimation of the noise variance in high dimensional probabilistic principal component analysis. J. R. Statist. Soc. B 79 (2017) 51–67 | DOI | MR | Zbl

[18] D. Paul, Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Stat. Sin. 17 (2007) 1617–1642 | MR | Zbl

[19] M. Reiss and M. Wahl, Non-asymptotic upper bounds for the reconstruction error of PCA. Preprint at (2016) | arXiv | MR

[20] I. Silin and V. Spokoiny, Bayesian inference for spectral projectors of covariance matrix. Electr. J. Stat. 12 (2018) 1948–1987 | MR | Zbl

[21] J. Sun, Assessing goodness of fit in confirmatory factor analysis. Meas. Eval. Counsel. Dev. 37 (2005) 240–256 | DOI

[22] V. Vu and J. Lei, Minimax sparse principal subspace estimation in high dimensions. Ann. Statist. 41 (2013) 2905–2947 | MR | Zbl

[23] A. Wald, Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Am. Math. Soc. 54 (1943) 426–482 | DOI | MR | Zbl

[24] T. Wang, Q. Berthet and R.J. Samworth, Statistical and computational trade-offs in estimation of sparse principal components. Ann. Statist. 44 (2016) 1896–1930 | DOI | MR | Zbl

[25] W. Wang and J. Fan, Asymptotics of empirical eigenstructure for high dimensional spiked covariance. Ann. Statist. 45 (2017) 1342–1374 | DOI | MR | Zbl

Cité par Sources :