Sparse recovery from extreme eigenvalues deviation inequalities
ESAIM: Probability and Statistics, Tome 23 (2019), pp. 430-463.

This article provides a new toolbox to derive sparse recovery guarantees – that is referred to as “stable and robust sparse regression” (SRSR) – from deviations on extreme singular values or extreme eigenvalues obtained in Random Matrix Theory. This work is based on Restricted Isometry Constants (RICs) which are a pivotal notion in Compressed Sensing and High-Dimensional Statistics as these constants finely assess how a linear operator is conditioned on the set of sparse vectors and hence how it performs in SRSR. While it is an open problem to construct deterministic matrices with apposite RICs, one can prove that such matrices exist using random matrices models. In this paper, we show upper bounds on RICs for Gaussian and Rademacher matrices using state-of-the-art deviation estimates on their extreme eigenvalues. This allows us to derive a lower bound on the probability of getting SRSR. One benefit of this paper is a direct and explicit derivation of upper bounds on RICs and lower bounds on SRSR from deviations on the extreme eigenvalues given by Random Matrix theory.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2018024
Classification : 60F10, 62J05, 62J07, 15A18, 15A42, 65F15
Mots-clés : Restricted isometry property, Gaussian matrices, Rademacher matrices, deviations inequalities, sparse regression
Dallaporta, Sandrine 1 ; De Castro, Yohann 1

1
@article{PS_2019__23__430_0,
     author = {Dallaporta, Sandrine and De Castro, Yohann},
     title = {Sparse recovery from extreme eigenvalues deviation inequalities},
     journal = {ESAIM: Probability and Statistics},
     pages = {430--463},
     publisher = {EDP-Sciences},
     volume = {23},
     year = {2019},
     doi = {10.1051/ps/2018024},
     zbl = {1447.60055},
     mrnumber = {3989600},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2018024/}
}
TY  - JOUR
AU  - Dallaporta, Sandrine
AU  - De Castro, Yohann
TI  - Sparse recovery from extreme eigenvalues deviation inequalities
JO  - ESAIM: Probability and Statistics
PY  - 2019
SP  - 430
EP  - 463
VL  - 23
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2018024/
DO  - 10.1051/ps/2018024
LA  - en
ID  - PS_2019__23__430_0
ER  - 
%0 Journal Article
%A Dallaporta, Sandrine
%A De Castro, Yohann
%T Sparse recovery from extreme eigenvalues deviation inequalities
%J ESAIM: Probability and Statistics
%D 2019
%P 430-463
%V 23
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2018024/
%R 10.1051/ps/2018024
%G en
%F PS_2019__23__430_0
Dallaporta, Sandrine; De Castro, Yohann. Sparse recovery from extreme eigenvalues deviation inequalities. ESAIM: Probability and Statistics, Tome 23 (2019), pp. 430-463. doi : 10.1051/ps/2018024. http://www.numdam.org/articles/10.1051/ps/2018024/

[1] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions. National Bureau of Standards, Washington DC (1965) | MR

[2] R. Adamczak, A. E. Litvak, A. Pajor and N. Tomczak-Jaegermann, Restricted isometry property of matrices with independent columns and neighborly polytopes by random sampling. Constr. Approx. 34 (2011) 61–88 | DOI | MR | Zbl

[3] D. Amelunxen, M. Lotz, M. Mccoy and J. A. Tropp, Living on the edge: phase transitions in convex programs with random data. Inf. Inference 3 (2014) 224–294 | DOI | MR | Zbl

[4] U. Ayaz, S. Dirksen and H. Rauhut, Uniform recovery of fusion frame structured sparse signals. Appl. Comput. Harmon. Anal. 41 (2016) 341–361 | DOI | MR | Zbl

[5] J.-M. Azaïs, Y. De Castro and S. Mourareau, A rice method proof of the null-space property over the grassmannian. Ann. Inst. Henri Poincaré - Probab. Stat. 53 (2017) 1821–1838 | MR | Zbl

[6] B. Bah and J. Tanner, Improved bounds on restricted isometry constants for gaussian matrices. SIAM J. Matrix Anal. Appl. 31 (2010) 2882–2898 | DOI | MR | Zbl

[7] B. Bah and J. Tanner, Bounds of restricted isometry constants in extreme asymptotics: formulae for Gaussian matrices. Linear Algebra Appl. 441 (2014) 88–109 | DOI | MR | Zbl

[8] R. Baraniuk, M. Davenport, R. Devore and M. Wakin, A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28 (2008) 253–263 | DOI | MR | Zbl

[9] K. Bertin, E. Le Pennec and V. Rivoirard, Adaptive dantzig density estimation. Ann. Inst. Henri Poincaré - Probab. Stat. 47 (2011) 43–74 | DOI | Numdam | MR | Zbl

[10] P. J. Bickel, Y. Ritov and A. B. Tsybakov, Simultaneous analysis of lasso and Dantzig selector. Ann. Stat. 37 (2009) 1705–1732 | DOI | MR | Zbl

[11] J. D. Blanchard, C. Cartis and J. Tanner, Compressed sensing: how sharp is the restricted isometry property? SIAM Rev. 53 (2011) 105–125 | DOI | MR | Zbl

[12] A. Borodin and P. Forrester, Increasing subsequences and the hard-to-soft edge transition in matrix ensembles. J. Phys. A 36 (2003) 2963–2981 | DOI | MR | Zbl

[13] T. T. Cai and A. Zhang, Sparse representation of a polytope and recovery of sparse signals and low-rank matrices. IEEE Trans. Inf. Theory 60 (2014) 122–132 | DOI | MR | Zbl

[14] E. J. Candés, J. Romberg and T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52 (2006) 489–509 | DOI | MR | Zbl

[15] E. J. Candès and T. Tao, Decoding by linear programming. IEEE Trans. Inf. Theory 51 (2005) 4203–4215 | DOI | MR | Zbl

[16] E. J. Candès and T. Tao, Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52 (2006) 5406–5425 | DOI | MR | Zbl

[17] E. J. Candes, The restricted isometry property and its implications for compressed sensing. C. R. Math. Acad. Sci. Paris 346 (2008) 589–592 | DOI | MR | Zbl

[18] Y. De Castro A remark on the lasso and the dantzig selector. Stat. Probab. Lett. 83 (2013) 304–314 | DOI | MR | Zbl

[19] D. Chafaï, O. Guédon, G. Lecué and A. Pajor, Interaction Between Compressed Sensing, Random Matrices and High Dimensional Geometry. No 37 of Panoramas et synthèses. Société Mathématique de France (2012) | MR | Zbl

[20] K. R. Davidson and S. J. Szarek, Local operator theory, random matrices and banach spaces. In Handbook of the Geometry of Banach Spaces, vol. 1. Elsevier, Amsterdam (2001) 317–366 | DOI | MR | Zbl

[21] S. Dirksen, Tail bounds via generic chaining. Electron. J. Probab. 20 (2015) 53 | DOI | MR | Zbl

[22] D. L. Donoho and J. Tanner, Neighborliness of randomly projected simplices in high dimensions. Proc. Nat. Acad. Sci. USA 102 (2005) 9452–9457 | DOI | MR | Zbl

[23] D. L. Donoho and J. Tanner, Counting faces of randomly projected polytopes when the projection radically lowers dimension. J. Am. Math. Soc. 22 (2009) 1–53 | DOI | MR | Zbl

[24] D. L. Donoho and J. Tanner, Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367 (2009) 4273–4293 | DOI | MR | Zbl

[25] O. N. Feldheim and S. Sodin, A universality result for the smallest eigenvalues of certain sample covariance matrices. Geom. Funct. Anal. 20 (2010) 88–123 | DOI | MR | Zbl

[26] S. Foucart and M.-J. Lai, Sparsest solutions of underdetermined linear systems via lq-minimization for 0 < q < = 1. Appl. Comput. Harmon. Anal. 26 (2009) 395–407. | DOI | MR | Zbl

[27] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing. Springer (2013) | DOI | MR | Zbl

[28] K. Johansson, Shape fluctuations and random matrices. Commun. Math. Phys. 209 (2000) 437–476 | DOI | MR | Zbl

[29] A. Juditsky and A. Nemirovski, Accuracy guarantees for l1-recovery. IEEE Trans. Inf. Theory 57 (2011) 7818–7839 | DOI | MR | Zbl

[30] G. Lecué and S. Mendelson, Sparse recovery under weak moment assumptions. J. Eur. Math. Soc. 19 (2017) 881–904 | DOI | MR | Zbl

[31] G. Lecué and S. Mendelson, Regularization and the small-ball method i: sparse recovery. Ann. Stat. 46 (2018) 611–641 | DOI | MR | Zbl

[32] M. Ledoux and B. Rider, Small deviations for beta ensembles. Electron. J. Probab. 15 (2010) 1319–1343 | DOI | MR | Zbl

[33] M. Ledoux, Deviation inequalities on largest eigenvalues. In Geometric Aspects of Functional Analysis, vol. 1910 of Lecture Notes in Mathematics. Springer, Berlin (2007) 167–219 | DOI | MR | Zbl

[34] C. Liaw, A. Mehrabian, Y. Plan and R. Vershynin, A simple tool for bounding the deviation of random matrices on geometric sets. In Geometric Aspects of Functional Analysis. Springer (2017) 277–299 | DOI | MR | Zbl

[35] A. E. Litvak, A. Pajor, M. Rudelson and N. Tomczak-Jaegermann, Smallest singular value of random matrices and geometry of random polytopes. Adv. Math. 195 (2005) 491–523 | DOI | MR | Zbl

[36] M. B. Mccoy and J. A. Tropp, Sharp recovery bounds for convex demixing, with applications. Found. Comput. Math. 14 (2014) 503–567 | DOI | MR | Zbl

[37] S. Mendelson, A. Pajor and N. Tomczak-Jaegermann, Uniform uncertainty principle for Bernoulli and subgaussian ensembles. Constr. Approx. 28 (2008) 277–289 | DOI | MR | Zbl

[38] S. Péché, Universality results for the largest eigenvalues of some sample covariance matrix ensembles. Probab. Theory Relat. Fields 143 (2009) 481–516 | DOI | MR | Zbl

[39] N. Pillai and J. Yin, Universality of covariance matrices. Ann. Appl. Probab. 24 (2014) 935–1001 | DOI | MR | Zbl

[40] M. Rudelson and R. Vershynin, On sparse reconstruction from Fourier and Gaussian measurements. Commun. Pure Appl. Math. 61 (2008) 1025–1045 | DOI | MR | Zbl

[41] M. Rudelson and R. Vershynin, Non-asymptotic theory of random matrices: extreme singular values, in Proceedings of the International Congress of Mathematicians. vol. III. Hindustan Book Agency, New Delhi (2010) 1576–1602 | MR | Zbl

[42] A. Soshnikov, A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices. J. Stat. Phys. 108 (2002) 1033–1056 | DOI | MR | Zbl

[43] Y. Traonmilin and R. Gribonval, Stable recovery of low-dimensional cones in hilbert spaces: one rip to rule them all. Appl. Comput. Harmon. Anal. 45 (2016) 170–205 | DOI | MR | Zbl

[44] S. A. Van De Geer and P. Bühlmann, On the conditions used to prove Oracle results for the lasso. Electron. J. Stat. 3 (2009) 1360–1392 | DOI | MR | Zbl

[45] K. Wang, Random covariance matrices: universality of local statistics of eigenvalues up to the edge. Random Matrices Theory Appl. 1 (2012) 1150005 | DOI | MR | Zbl

Cité par Sources :