On fixed gain recursive estimators with discontinuity in the parameters
ESAIM: Probability and Statistics, Tome 23 (2019), pp. 217-244.

In this paper, we estimate the expected tracking error of a fixed gain stochastic approximation scheme. The underlying process is not assumed Markovian, a mixing condition is required instead. Furthermore, the updating function may be discontinuous in the parameter.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2018019
Classification : 62L20, 93E15, 93E35
Mots-clés : Adaptive control, stochastic gradient, fixed gain, recursive estimators, parameter discontinuity, mixing processes, non-Markovian dynamics
Chau, Huy N. 1 ; Kumar, Chaman 1 ; Rásonyi, Miklós 1 ; Sabanis, Sotirios 1

1
@article{PS_2019__23__217_0,
     author = {Chau, Huy N. and Kumar, Chaman and R\'asonyi, Mikl\'os and Sabanis, Sotirios},
     title = {On fixed gain recursive estimators with discontinuity in the parameters},
     journal = {ESAIM: Probability and Statistics},
     pages = {217--244},
     publisher = {EDP-Sciences},
     volume = {23},
     year = {2019},
     doi = {10.1051/ps/2018019},
     mrnumber = {3945579},
     zbl = {1420.62359},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2018019/}
}
TY  - JOUR
AU  - Chau, Huy N.
AU  - Kumar, Chaman
AU  - Rásonyi, Miklós
AU  - Sabanis, Sotirios
TI  - On fixed gain recursive estimators with discontinuity in the parameters
JO  - ESAIM: Probability and Statistics
PY  - 2019
SP  - 217
EP  - 244
VL  - 23
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2018019/
DO  - 10.1051/ps/2018019
LA  - en
ID  - PS_2019__23__217_0
ER  - 
%0 Journal Article
%A Chau, Huy N.
%A Kumar, Chaman
%A Rásonyi, Miklós
%A Sabanis, Sotirios
%T On fixed gain recursive estimators with discontinuity in the parameters
%J ESAIM: Probability and Statistics
%D 2019
%P 217-244
%V 23
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2018019/
%R 10.1051/ps/2018019
%G en
%F PS_2019__23__217_0
Chau, Huy N.; Kumar, Chaman; Rásonyi, Miklós; Sabanis, Sotirios. On fixed gain recursive estimators with discontinuity in the parameters. ESAIM: Probability and Statistics, Tome 23 (2019), pp. 217-244. doi : 10.1051/ps/2018019. http://www.numdam.org/articles/10.1051/ps/2018019/

[1] M. Benaim, J.-C. Fort and G. Pagès, Convergence of the one-dimensional Kohonen algorithm. Adv. Appl. Probab. 30 (1998) 850–869. | DOI | MR | Zbl

[2] R. Bhattacharya and E.C. Waymire, An approach to the existence of unique invariant probabilities for Markov processes. János Bolyai Math. Soc. I (2002) 181–200. | MR | Zbl

[3] J.A. Bucklew, T.G. Kurtz and W.A. Sethares, Weak convergence and local stability properties of fixed step size recursive algorithms. IEEE Trans. Inf. Theory 39 (1993) 966–978. | DOI | MR | Zbl

[4] F. Comte and É. Renault, Long memory in continuous-time stochastic volatility models. Math. Financ. 8 (1998) 291–323. | DOI | MR | Zbl

[5] P. Diaconis and D. Freedman, Iterated random functions. SIAM Rev. 41 (1999) 45–76. | DOI | MR | Zbl

[6] S.N. Ethier and T.G. Kurtz, Markov Processes: Characterization and Convergence. Wiley, New York (1986). | DOI | MR | Zbl

[7] E. Eweda, Convergence analysis of an adaptive filter equipped with the sign-sign algorithm. IEEE Trans. Automat. Control 40 (1995) 1807–1811. | DOI | MR | Zbl

[8] E. Eweda, Analysis and design of a signed regressor LMS algorithm for stationary and nonstationary adaptive filtering with correlated Gaussian data. IEEE Trans. Circ. Syst. 37 (1990) 1367–1374. | DOI

[9] G. Fort, É. Moulines, A. Schreck and M. Vihola, Convergence of Markovian stochastic approximation with discontinuous dynamics. SIAM J. Control Optim. 54 (2016) 866–893. | DOI | MR | Zbl

[10] J. Gatheral, Th. Jaisson and M. Rosenbaum, Volatility is rough. Quant. Financ. 18 (2018) 933–949. | DOI | MR | Zbl

[11] S. Geman, Some averaging and stability results for random differential equations. SIAM J. Appl. Math. 36 (1979) 86–105. | DOI | MR | Zbl

[12] L. Gerencsér, On a class of mixing processes. Stochastics 26 (1989) 165–191. | MR | Zbl

[13] L. Gerencsér, On fixed gain recursive estimation processes. Retrieval code for full electronic manuscript: 56854. J. Math. Syst. Estim. Control 6 (1996) 355–358. | MR | Zbl

[14] L. Gerencsér, Strong approximation of the recursive prediction error estimator of the parameters of an ARMA process. Syst. Control Lett. 21 (1993) 347–351. | DOI | MR | Zbl

[15] L. Gerencsér, On Rissanen’s predictive stochastic complexity for stationary ARMA processes. J. Stat. Plan. Inference 41 (1994) 303–325. | DOI | MR | Zbl

[16] L. Gerencsér, AR(∞) estimation and nonparametric stochastic complexity. IEEE Trans. Inf. Theory 38 (1992) 1768–1778. | DOI | MR | Zbl

[17] L. Gerencsér, Stability of random iterative mappings, in Modeling Uncertainty. An Examination of Stochastic Theory, Methods,and Applications, edited by M. Dror, P. L’Écuyer and F. Szidarovszky. Vol. 46 of International Series in Operations Research and Management Science. Kluwer Academic Publishers, Boston (2002) 359–371. | MR

[18] L. Gerencsér, A representation theorem for the error of recursive estimators. SIAM J. Control Optim. 44 (2006) 2123–2188. | DOI | MR | Zbl

[19] L. Gerencsér, Rate of convergence of recursive estimators. SIAM J. Control Optim. 30 (1992) 1200–1227. | DOI | MR | Zbl

[20] L. Gerencsér, G. Molnár-Sáska, Gy. Michaletzky, G. Tusnády and Zs. Vágó, New methods for the statistical analysis of Hidden Markov models, in Proceedings of the 41st IEEE Conference on Decision and Control (2002), Las Vegas, USA. IEEE Press, New York  (2002) 2272–2277. | DOI

[21] L. Giraitis, H.L. Koul and D. Surgailis, Large Sample Inference for Long Memory Processes. Imperial College Press, London (2012). | DOI | MR | Zbl

[22] M. Hairer and J. Mattingly, Yet another look at Harris’ ergodic theorem for Markov chains, in Seminar on Stochastic Analysis, Random Fields and Applications VI, edited by R. Dalang, M. Dozzi and F. Russo. Vol. 63 of Progress in Probability. Springer, Basel (2011) 109–117. | MR | Zbl

[23] Ph. Hartman, Ordinary differential equations. Vol. 38 of Classics in Applied Mathematics, 2nd edition. SIAM, PA (2002). | MR | Zbl

[24] O. Kallenberg, Foundations of Modern Probability, 2nd edition. Springer, NY (2002). | DOI | MR | Zbl

[25] T. Kawata, Fourier Analysis in Probability Theory. Academic Press, NY (1972). | MR | Zbl

[26] R. Koenker and G. Bassett, Jr Regression quantiles. Econometrica 46 (1978) 33–50. | DOI | MR | Zbl

[27] T. Kohonen, Analysis of a simple self-organising process. Biol. Cybern. 44 (1982) 135–140. | DOI | MR | Zbl

[28] S. Laruelle and G. Pagès, Stochastic approximation with averaging innovation applied to finance. Monte Carlo Methods Appl. 18 (2012) 1–51. | DOI | MR | Zbl

[29] J. Neveu, Discrete-Parameter Martingales. North-Holland Mathematical Library. American Elsevier, NY (1975). | MR | Zbl

[30] M. Rásonyi, On the statistical analysis of quantized Gaussian AR(1) processes. Int. J. Adapt. Control Signal Process. 24 (2010) 490–507. | DOI | MR | Zbl

Cité par Sources :