Stochastic formulations of the parametrix method
ESAIM: Probability and Statistics, Tome 22 (2018), pp. 178-209.

In this manuscript, we consider stochastic expressions of the parametrix method for solutions of d -dimensional stochastic differential equations (SDEs) with drift coefficients which belong to L p ( 𝐑 d ) , p > d . We prove the existence and Hölder continuity of probability density functions for distributions of solutions at fixed points and obtain an explicit expansion via (stochastic) parametrix methods. We also obtain Gaussian type upper and lower bounds for these probability density functions.

DOI : 10.1051/ps/2018013
Classification : 2010, 60H07
Mots clés : Stochastic differential equation, singular drift, density function, Gaussian two-sided bounds, parametrix method
Kohatsu-Higa, Arturo 1 ; Yûki, Gô 1

1
@article{PS_2018__22__178_0,
     author = {Kohatsu-Higa, Arturo and Y\^uki, G\^o},
     title = {Stochastic formulations of the parametrix method},
     journal = {ESAIM: Probability and Statistics},
     pages = {178--209},
     publisher = {EDP-Sciences},
     volume = {22},
     year = {2018},
     doi = {10.1051/ps/2018013},
     mrnumber = {3891754},
     zbl = {1403.60047},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2018013/}
}
TY  - JOUR
AU  - Kohatsu-Higa, Arturo
AU  - Yûki, Gô
TI  - Stochastic formulations of the parametrix method
JO  - ESAIM: Probability and Statistics
PY  - 2018
SP  - 178
EP  - 209
VL  - 22
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2018013/
DO  - 10.1051/ps/2018013
LA  - en
ID  - PS_2018__22__178_0
ER  - 
%0 Journal Article
%A Kohatsu-Higa, Arturo
%A Yûki, Gô
%T Stochastic formulations of the parametrix method
%J ESAIM: Probability and Statistics
%D 2018
%P 178-209
%V 22
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2018013/
%R 10.1051/ps/2018013
%G en
%F PS_2018__22__178_0
Kohatsu-Higa, Arturo; Yûki, Gô. Stochastic formulations of the parametrix method. ESAIM: Probability and Statistics, Tome 22 (2018), pp. 178-209. doi : 10.1051/ps/2018013. http://www.numdam.org/articles/10.1051/ps/2018013/

W. Arendt, G. Metafune and D. Pallara, Gaussian estimates for elliptic operators with unbounded drift. J. Math. Anal. Appl. 338 (2008) 505–517. | DOI | MR | Zbl

V. Bally and A. Kohatsu-Higa, A probabilistic interpretation of the parametrix method. Ann. Appl. Probab. 25 (2015) 3095–3138. | DOI | MR | Zbl

D. Baños and P. Krühner, Optimal density bounds for marginals of Itô processes. Commun. Stoch. Anal. 10 (2016) 1. | MR

D. Baños and P. Krühner, Hölder continuous densities of solutions of SDEs with measurable and path dependent drift coefficients. Stoch. Proc. Appl. 127 (2017) 1785–1799. | DOI | MR | Zbl

A.S. Cherny and H.-J. Engelbert, Singular Stochastic Differential Equations, Vol. 1858. Springer Science & Business Media, Berlin (2005). | DOI | MR | Zbl

F. Corielli, P. Foschi and A. Pascucci. Parametrix approximation of diffusion transition densities. SIAM J. Finan. Math. 1 (2010) 833–867. | DOI | MR

G. Da Prato, F. Flandoli, E. Priola and M. Röckner, Strong uniqueness for stochastic evolution equations in hilbert spaces perturbed by a bounded measurable drift. Ann. Probab. 41 (2013) 3306–3344. | DOI | MR | Zbl

G. Da Prato, F. Flandoli, E. Priola and M. Röckner, Strong uniqueness for stochastic evolution equations with unbounded measurable drift term. J. Theor. Probab. 28 (2015) 1571–1600. | DOI | MR | Zbl

S. De Marco, Smoothness and asymptotic estimates of densities for sdes with locally smooth coefficients and applications to square root-type diffusions. Ann. Appl. Probab. 21 (2011) 1282–1321. | DOI | MR | Zbl

M.D. Francesco and A. Pascucci, On a class of degenerate parabolic equations of kolmogorov type. AMRX Appl. Math. Res. Express 3 (2005) 77–116. | DOI | MR

A. Friedman, Partial Differential Equations of Parabolic Type. Prentice-Hall, Inc., Englewood Cliffs, NJ (1964). | MR | Zbl

M. Hayashi, A. Kohatsu-Higa and G. Yûki, Local Hölder continuity property of the densities of solutions of SDEs with singular coefficients. J. Theoret. Probab. 26 (2013) 1117–1134. | DOI | MR | Zbl

M. Hayashi, A. Kohatsu-Higa and G. Yûki, Hölder continuity property of the densities of SDEs with singular drift coefficients. Electron. J. Probab. 19 (2014) 1–22. | DOI | MR | Zbl

I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, 2nd Edn. Vol. 113 of Graduate Texts in Mathematics. Springer-Verlag, New York (1991). | MR | Zbl

P. Kim and R. Song, Two-sided estimates on the density of brownian motion with singular drift. Illinois J. Math. 50 (2006) 635–688. | MR | Zbl

A. Kohatsu-Higa and A. Makhlouf, Estimates for the density of functionals of SDEs with irregular drift. Stoch. Process. Appl. 123 (2013) 1716–1728. | DOI | MR | Zbl

A. Kohatsu-Higa and A. Tanaka, A Malliavin calculus method to study densities of additive functionals of SDE’s with irregular drifts. Ann.Inst. Henri Poincaré Probab. Stat. 48 (2012) 871–883. | DOI | Numdam | MR | Zbl

N. V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Relat. Fields 131 (2005) 154–196. | DOI | MR | Zbl

S. Kusuoka, Continuity and gaussian two-sided bounds of the density functions of the solutions to path-dependent stochastic differential equations via perturbation. Stoch. Process. Appl. (2016) 359–384. | MR | Zbl

S. Kusuoka and D. Stroock. Applications of the Malliavin calculus. II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1985) 1–76. | MR | Zbl

A. Makhlouf, Existence and Gaussian bounds for the density of Brownian motion with random drift. Commun. Stoch. Anal. 10 (2016) 151–162. | MR

D. Nualart, The Malliavin Calculus and Related Topics, 2nd Edn. Probability and its Applications (New York). Springer-Verlag, Berlin (2006). | MR | Zbl

A. Pascucci and A. Pesce, The Parametrix Method for Parabolic Spdes. Preprint (2018). | arXiv | MR

N. Portenko, Generalized Diffusion Processes. Translations of Mathematical Monographs. American Mathematical Society, Providence,RI (1990). | DOI | MR | Zbl

Z. Qian and W. Zheng, A representation formula for transition probability densities of diffusions and applications. Stoch. Process. Appl. 111 (2004) 57–76. | DOI | MR | Zbl

Z. Qian, F. Russo and W. Zheng, Comparison theorem and estimates for transition probability densities of diffusion processes. Probab. Theory Relat. Fields 127 (2003) 388–406. | DOI | MR | Zbl

M. Romito, A Simple Method for the Existence of a Density for Stochastic Evolutions with Rough Coefficients. Preprint (2017). | arXiv | MR

J. Shin and G. Trutnau, On singular stochastic differential equations and dirichlet forms. Rev. Roumaine Math. Pures Appl. 62 (2017a) 217–258. | MR | Zbl

J. Shin and G. Trutnau, On the stochastic regularity of distorted brownian motions. Trans. Am. Math. Soc. 369 (2017b) 7883–7915. | DOI | MR | Zbl

A.J. Veretennikov and N.V. Krylov, Explicit formulae for the solutions of stochastic equations. Mat. Sb. (N.S.) 100 (1976) 266–284. | MR | Zbl

Cité par Sources :