Adaptive nonparametric drift estimation of an integrated jump diffusion process
ESAIM: Probability and Statistics, Tome 22 (2018), pp. 236-260.

In the present article, we investigate nonparametric estimation of the unknown drift function b in an integrated Lévy driven jump diffusion model. Our aim will be to estimate the drift on a compact set based on a high-frequency data sample.

Instead of observing the jump diffusion process V itself, we observe a discrete and high-frequent sample of the integrated process

X t : = 0 t V s d s

Based on the available observations of X t , we will construct an adaptive penalized least-squares estimate in order to compute an adaptive estimator of the corresponding drift function b . Under appropriate assumptions, we will bound the L 2 -risk of our proposed estimator. Moreover, we study the behavior of the proposed estimator in various Monte Carlo simulation setups.

DOI : 10.1051/ps/2018005
Classification : 62M09, 62G08
Mots-clés : Adaptive estimation, integrated jump diffusion, drift estimation, model selection, mean square estimator
Funke, Benedikt 1 ; Schmisser, Émeline 1

1
@article{PS_2018__22__236_0,
     author = {Funke, Benedikt and Schmisser, \'Emeline},
     title = {Adaptive nonparametric drift estimation of an integrated jump diffusion process},
     journal = {ESAIM: Probability and Statistics},
     pages = {236--260},
     publisher = {EDP-Sciences},
     volume = {22},
     year = {2018},
     doi = {10.1051/ps/2018005},
     mrnumber = {3903643},
     zbl = {1409.62161},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2018005/}
}
TY  - JOUR
AU  - Funke, Benedikt
AU  - Schmisser, Émeline
TI  - Adaptive nonparametric drift estimation of an integrated jump diffusion process
JO  - ESAIM: Probability and Statistics
PY  - 2018
SP  - 236
EP  - 260
VL  - 22
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2018005/
DO  - 10.1051/ps/2018005
LA  - en
ID  - PS_2018__22__236_0
ER  - 
%0 Journal Article
%A Funke, Benedikt
%A Schmisser, Émeline
%T Adaptive nonparametric drift estimation of an integrated jump diffusion process
%J ESAIM: Probability and Statistics
%D 2018
%P 236-260
%V 22
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2018005/
%R 10.1051/ps/2018005
%G en
%F PS_2018__22__236_0
Funke, Benedikt; Schmisser, Émeline. Adaptive nonparametric drift estimation of an integrated jump diffusion process. ESAIM: Probability and Statistics, Tome 22 (2018), pp. 236-260. doi : 10.1051/ps/2018005. http://www.numdam.org/articles/10.1051/ps/2018005/

T. Andersen, T. Bollerslev, F. Diebold and P. Labys, The distribution of exchange rate volatility. J. Am. Stat. Assoc. 91 (2001) 42–55. | DOI | MR | Zbl

D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd edn. Part of Cambridge Studies in Advanced Mathematics. Cambridge, UK (2009). | DOI | MR

F. Baltazar-Larios and M. Sørensen, Maximum likelihood estimation for integrated diffusion processes, in Contemporary Quantitative Finance: Essays in Honor of Eckhard Platen, edited by C. Chiarella and A. Novikov. Springer Heidelberg, Germany (2010). | DOI | MR | Zbl

F. Bandi and T. Nguyen, On the functional estimation of jump-diffusion models. J. Econom. 116 (2003) 293–328. | DOI | MR | Zbl

F. Bandi and P. Phillips, Fully nonparametric estimation of scalar diffusion models. Econometrica 71 (2003) 241–243. | DOI | MR | Zbl

A. Barron, L. Birgé and P. Massart, Risk bounds for model selection via penalization. Probab. Theory Relat. Fields 113 (1999) 301–413. | DOI | MR | Zbl

T. Bollerslev and H. Zhou, Estimating stochastic volatility diffusion using conditional moments of integrated volatility. J. Econom. 109 (2002) 33–65. | DOI | MR | Zbl

J. Campbell, A. Lo and A. Mackinlay, The Econometrics of Financial Markets. Princeton University Press, Princeton (1997). | DOI | Zbl

F. Comte, V. Genon-Catalot and Y. Rozenholc, Penalized nonparametric mean square error estimation of the coefficients of diffusion processes. Bernoulli 13 (2007) 514–543. | DOI | MR | Zbl

F. Comte, V. Genon-Catalot and Y. Rozenholc, Nonparametric adaptive estimation for integrated diffusions. Stoch. Process. Appl. 119 (2009) 811–834. | DOI | MR | Zbl

R.A. Devore and G.G. Lorentz, Constructive Approximation. Vol. 303 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg (1993). | MR | Zbl

S. Ditlevsen and M. Sørensen, Inference for observations of integrated diffusion processes. Scand. J. Stat. 31 (2004) 417–429. | DOI | MR | Zbl

D. Florens-Zmirou, On estimating the diffusion coefficient from discrete observations. J. Appl. Probab. 30 (1993) 790–804. | DOI | MR | Zbl

A. Gloter, Discrete sampling of an integrated diffusion process and parameter estimation of the diffusion coefficient. ESAIM: PS 4 (2000) 205–227. | DOI | Numdam | MR | Zbl

A. Gloter, Parameter estimation for a discretely observed integrated process. Scand. J. Stat. 33 (2006) 83–104. | DOI | MR | Zbl

A. Gloter and E. Gobet, LAMN property for hidden processes: the case of integrated diffusions. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008) 104–128. | DOI | Numdam | MR | Zbl

M. Lefebvre, On the inverse of the first hitting time problem for bidimensional processes. J. Appl. Probab. 34 (1997) 610–622. | DOI | MR | Zbl

H. Masuda, Ergodicity and exponential β-mixing bounds for multidimensional diffusions with jumps. Stoch. Process. Appl. 117 (2007) 35–56. | DOI | MR | Zbl

Y. Meyer, Ondelettes et opérateurs. I, in Actualités Mathématiques. [Current Mathematical Topics]. Hermann, Paris (1990). | MR | Zbl

J. Nicolau, Nonparametric estimation of second-order stochastic differential equations. Econom. Theory 23 (2007) 880–898. | DOI | MR | Zbl

E. Schmisser, Nonparametric adaptive estimation of the drift for a jump diffusion process. Stoch. Process. Appl. 124 (2014) 883–914. | DOI | MR | Zbl

Y. Song, Nonparametric estimation for second-order diffusion models in high frequency data. Singap. Econ. Rev. 63 (2017) 1–31.

Y. Song and Z. Lin, Empirical likelihood inference for the second-order jump-diffusion model. Stat. Probab. Lett. 83 (2013) 184–195. | DOI | MR | Zbl

Y. Song, Z. Lin and H. Wang, Re-weighted nadaraya-watson estimation of second-order jump-diffusion model. J. Stat. Plan. Inference 143 (2013) 730–744. | DOI | MR | Zbl

Cité par Sources :