On extreme value theory for group stationary Gaussian processes
ESAIM: Probability and Statistics, Tome 22 (2018), pp. 1-18.

We study extreme value theory of right stationary Gaussian processes with parameters in open subsets with compact closure of (not necessarily Abelian) locally compact topological groups. Even when specialized to Euclidian space our result extend results on extremes of stationary Gaussian processes and fields in the literature by means of requiring weaker technical conditions as well as by means of the fact that group stationary processes need not be stationary in the usual sense (that is, with respect to addition as group operation).

Reçu le :
Accepté le :
DOI : 10.1051/ps/2018002
Classification : 60F10, 60G10, 60G15, 60G60, 60G70
Mots-clés : Extreme value, Gaussian process, sojourn, stationary process.
Albin, Patrik 1

1
@article{PS_2018__22__1_0,
     author = {Albin, Patrik},
     title = {On extreme value theory for group stationary {Gaussian} processes},
     journal = {ESAIM: Probability and Statistics},
     pages = {1--18},
     publisher = {EDP-Sciences},
     volume = {22},
     year = {2018},
     doi = {10.1051/ps/2018002},
     mrnumber = {3872125},
     zbl = {1405.60035},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2018002/}
}
TY  - JOUR
AU  - Albin, Patrik
TI  - On extreme value theory for group stationary Gaussian processes
JO  - ESAIM: Probability and Statistics
PY  - 2018
SP  - 1
EP  - 18
VL  - 22
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2018002/
DO  - 10.1051/ps/2018002
LA  - en
ID  - PS_2018__22__1_0
ER  - 
%0 Journal Article
%A Albin, Patrik
%T On extreme value theory for group stationary Gaussian processes
%J ESAIM: Probability and Statistics
%D 2018
%P 1-18
%V 22
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2018002/
%R 10.1051/ps/2018002
%G en
%F PS_2018__22__1_0
Albin, Patrik. On extreme value theory for group stationary Gaussian processes. ESAIM: Probability and Statistics, Tome 22 (2018), pp. 1-18. doi : 10.1051/ps/2018002. http://www.numdam.org/articles/10.1051/ps/2018002/

[1] R.J. Adler, The Geometry of Random Fields. Wiley, Chichester (1981). | MR | Zbl

[2] R.J. Adler, An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes. Vol. 12 of Lecture Notes. IMS, Hayward (1990). | MR | Zbl

[3] J.M.P. Albin, On extremal theory for stationary processes. Ann. Probab. 18 (1990) 92–128. | MR | Zbl

[4] J.M.P. Albin and H. Choi, A new proof of an old result by Pickands. Electron. Commun. Probab. 15 (2010) 339–345. | MR | Zbl

[5] S.M. Berman, Sojourns and Extremes of Stochastic Processes. Wadsworth and Brooks/Cole, Belmont, CA (1992). | MR | Zbl

[6] P. Bickel and M. Rosenblatt, Two-dimensional random fields, in of Multivariate Analysis, Vol. III, edited by P.R. Krishnaiah. Academic Press, New York (1973) pp. 3–15. | MR | Zbl

[7] N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular Variation. Cambridge University Press (1987). | DOI | MR | Zbl

[8] K. Burnecki and Z. Michna, Simulation of Pickands constants. Probab. Math. Stat. 22 (2002) 193–199. | MR | Zbl

[9] R.M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Funct. Anal. 1 (1967) 290–330. | DOI | MR | Zbl

[10] S.N. Evans, The maximum distribution of a Gaussian stochastic process indexed by a local field. J. Aust. Math. Soc. Ser. A 46 (1989) 69–87. | DOI | MR | Zbl

[11] X. Fernique, Regularité des trajectoires des fonctions aléatoires gaussiennes, in École d’Été de Probabilités de Saint-Flour, IV-1974. Vol. 480 of Lecture Notes in Math. Springer, Berlin (1975) pp. 1–96. | MR | Zbl

[12] S. Lang, SL2(ℝ). Addison-Wesley, Reading, MA (1975).

[13] M.R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes. Springer, New York (1983). | DOI | MR | Zbl

[14] G. Lindgren, Extreme values and crossings for the χ2process and other functions of multidimensional Gaussian processes. Adv. Appl. Probab. 12 (1983) 746–774. | MR | Zbl

[15] J. Pickands Iii, Upcrossing probabilities for stationary Gaussian processes. Trans. Am. Math. Soc. 145 (1969) 51–73. | DOI | MR | Zbl

[16] J. Pickands Iii, Asymptotic properties of the maximum in a stationary Gaussian process. Trans. Am. Math. Soc. 145 (1969) 75–86. | MR | Zbl

[17] V.I. Piterbarg, Asymptotic Methods in the Theory of Gaussian Processes and Fields. Vol. 148 of Translations of Mathematical Monographs. Translation from the original 1988 Russian edition. American Mathematical Society, Providence (1996). | MR | Zbl

[18] G. Samorodnitsky, Probability tails of Gaussian extrema. Stoch. Process. Appl. 38 (1991) 55–84. | DOI | MR | Zbl

[19] G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes. Chapman & Hall, New York (1994). | MR | Zbl

[20] K. Sharpe, Some properties of the crossings process generated by a stationary χ2 process. Adv. Appl. Probab. 10 (1978) 373–391. | DOI | MR | Zbl

Cité par Sources :