Validation of positive expectation dependence
ESAIM: Probability and Statistics, Tome 21 (2017), pp. 536-561.

In this paper, we develop tests for positive expectation dependence. The proposed tests are based on weighted Kolmogorov−Smirnov type statistics. These originate from the function valued monotonic dependence function, describing local changes of the strength of the dependence. The resulting procedure is supported by a simple and insightful graphical device. This paper presents asymptotic and simulation results for such tests. We show that an inference relying on p-values and wild bootstrap allows to overcome inherent difficulties of this testing problem. Our simulations show that the new tests perform well in finite samples. A Danish fire insurance data set is examined to demonstrate the practical application of the proposed inference methods.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2017015
Classification : 60F05, 62G09, 62G10, 62G20
Mots clés : Hypothesis testing, expectation dependence, Lorenz curve, monotonic dependence function, multiplier central limit theorem, wild bootstrap, Zenga curve
Ćmiel, Bogdan 1 ; Ledwina, Teresa 2

1 AGH University of Science and Technology, Faculty of Applied Mathematics, Al. Mickiewicza 30, 30-059 Cracow, Poland
2 Polish Academy of Sciences, Institute of Mathematics, ul. Kopernika 18, 51-617 Wrocław, Poland.
@article{PS_2017__21__536_0,
     author = {\'Cmiel, Bogdan and Ledwina, Teresa},
     title = {Validation of positive expectation dependence},
     journal = {ESAIM: Probability and Statistics},
     pages = {536--561},
     publisher = {EDP-Sciences},
     volume = {21},
     year = {2017},
     doi = {10.1051/ps/2017015},
     zbl = {1393.60028},
     mrnumber = {3743925},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2017015/}
}
TY  - JOUR
AU  - Ćmiel, Bogdan
AU  - Ledwina, Teresa
TI  - Validation of positive expectation dependence
JO  - ESAIM: Probability and Statistics
PY  - 2017
SP  - 536
EP  - 561
VL  - 21
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2017015/
DO  - 10.1051/ps/2017015
LA  - en
ID  - PS_2017__21__536_0
ER  - 
%0 Journal Article
%A Ćmiel, Bogdan
%A Ledwina, Teresa
%T Validation of positive expectation dependence
%J ESAIM: Probability and Statistics
%D 2017
%P 536-561
%V 21
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2017015/
%R 10.1051/ps/2017015
%G en
%F PS_2017__21__536_0
Ćmiel, Bogdan; Ledwina, Teresa. Validation of positive expectation dependence. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 536-561. doi : 10.1051/ps/2017015. http://www.numdam.org/articles/10.1051/ps/2017015/

W. Albers, Stop-loss premiums under dependence. Insurance: Math. Econom. 24 (1999) 173−185. | Zbl

N. Balakrishnan and Ch.-D.Lai, Continuous Bivariate Distributions. Springer, Dordrecht (2009). | MR | Zbl

G.F. Barrett and S.G. Donald, Consistent tests for stochastic dominance. Econometrica 71 (2003) 71–104. | DOI | MR | Zbl

D.G. Baur, The structure and degree of dependence: A quantile regression approach. J. Bank. Fin. 37 (2013) 786–798. | DOI

T. Bednarski and T. Ledwina, A note on the weak convergence of an estimator of monotonic dependence function of two random variables. Math. Oper. Stat., Ser. Statist. 13 (1982) 555–560. | MR | Zbl

G.D. Berentsen and D. Tjøstheim, Recognizing and visualizing departures from independence in bivariate data using local Gaussian correlation. Statist. Comput. 24 (2014) 785–801. | DOI | MR | Zbl

P. Billingsley, Convergence of Probability Measures. Wiley, New York (1968). | MR | Zbl

R. Cont, Empirical properties of asset returns: stylized facts and statistical issues. Quant. Fin. 1 (2001) 223–236. | DOI | Zbl

M. Csörgő, J.L. Gastwirth and R. Zitikis, Asymptotic confidence bands for the Lorenz and Bonferroni curves based on the empirical Lorenz curve. J. Stat. Plan. Inference 74 (1998) 65–91. | DOI | MR | Zbl

J. Ćwik, T. Kowalczyk, A. Kowalski, E. Pleszczyńska, W. Szczȩsny and T.Wierzbowska, Monotonic dependence function: background, new results and applications. In Mathematical Statistics and Probability Theory. Vol. 2 of Lect. Notes Statistics. Springer, New York (1980) 111–121. | MR | Zbl

Yu. Davydov and V. Egorov, Functional limit theorems for induced order statistics. Math. Methods Statist. 9 (2000) 297–313. | MR | Zbl

S. Demarta and A.J. Mcneil, The t copula and related copulas. Inter. Statist. Rev. 73 (2005) 111–129. | DOI | Zbl

M. Denuit, R.J. Huang and L.Y. Tzeng, Almost expectation and excess dependence notions. Theory Decision 79 (2015) 375–401. | DOI | MR | Zbl

M. Denuit and M. Mesfioui, Preserving the Rothschild−Stiglitz type increase in risk with background risk: A characterization. Insur.: Math. Econ. 72 (2017) 1–5. | MR | Zbl

M. Denuit and O. Scaillet, Nonparametric tests for positive quadrant dependence. J. Fin. Econ. 2 (2004) 422–450.

J. Dhaene and M.J. Goovaerts, On the dependency of risks in the individual life model. Insur.: Math. Econ. 19 (1997) 243–253. | MR | Zbl

M. Egozcue, L.F. Garcia, W.-K. Wong and R. Zitikis, Grüss-type bounds for covariances and the notion of quadrant dependence in expectation. Central Europ. J. Math. 9 (2011) 1288–1297. | DOI | MR | Zbl

P.A. Embrechts, A. McNeil and D. Straumann, Correlation and dependency in risk management: properties and pitfalls. In Risk Management: Value at Risk and Beyond, edited by M. Dempster and H. Moffatt. Cambridge University Press (2002) 176–223. | MR

Ch. M. Goldie, Convergence theorems for empirical Lorenz curves and their inverses. Adv. Appl. Probab. 9 (1977) 765–791. | DOI | MR | Zbl

I. Gijbels, M. Omelka and D. Sznajder, Positive quadrant dependence tests for copulas. Canadian J. Statist. 38 (2010) 555–581. | DOI | MR | Zbl

X. Guo and J. Li, Confidence bands for expectation dependence with applications. Insur.: Math. Econ. 68 (2016) 141–149. | MR | Zbl

X. Guo, J.Y. Li, D.R. Liu and J.L. Wang, Preserving the Rothschild−Stiglitz type of increasing risk with background risk. Insur.: Math. Econ. 70 (2016) 144–149. | MR | Zbl

M.S. Handcock and M. Morris, Relative Distribution Methods in the Social Sciences. Springer, New York (1999). | MR | Zbl

S.K. Hong, K.O. Lew and R. Macminn, Brockett, P. Mossin’s theorem given random initial wealth. J. Risk Insur. 78 (2011) 309–324. | DOI

R. Kaas, How to (and how not to) compute stop-loss premiums in practice. Insur.: Math. Econ. 13 (1993) 241–254. | Zbl

T. Kowalczyk, General definition and sample counterparts of monotonic dependence functions of bivariate distributions. Math. Oper. Stat., Ser. Statist. 8 (1977) 351–365. | MR | Zbl

T. Kowalczyk Shape of the monotonic dependence function. Math. Oper. Stat., Ser. Statist. 13 (1982) 183–192. | MR | Zbl

T. Kowalczyk, A. Kowalski, A. Matuszewski and E. Pleszczyńska, Applications of monotonic dependence functions: Descriptive aspects. Zastosow. Mat. XVI (1980) 579–591. | MR | Zbl

T. Kowalczyk and E. Pleszczyńska, Monotonic dependence functions of bivariate distributions. Ann. Statist. 5 (1977) 1221–1227. | DOI | MR | Zbl

T. Kowalczyk and W. Szczesny, Preliminary concepts of bivariate dependence. In Grade Models and Methods for Data Analysis, edited by T. Kowalczyk, E. Pleszczyńska, F. Ruland (2004) 185–215. | MR

M. Ledoux and M. Talagrand, Un critère sur les petites boules dans le théorème limite central. Probab. Theory Relat. Fields 77 (1988) 29–47. | DOI | MR | Zbl

M. Ledoux and M. Talagrand, Probability in Banach Spaces. Springer, Berlin (1991). | MR | Zbl

T. Ledwina, Visualizing association structure in bivariate copulas using new dependence function. In Stochastic Models, Statistics and Their Applications. Vol. 122 of Springer Proc. Math. Statist., edited by A. Steland, E. Rafajłowicz and K. Szajowski (2015) 19–27. | MR

T. Ledwina and G. Wyłupek, Validation of positive quadrant dependence. Insur.: Math. Econ. 56 (2014) 38–47. | MR | Zbl

R. Li, Y. Cheng and J.P. Fine, Quantile association regression models. J. Amer. Stat. Assoc. 109 (2014) 230–242. | DOI | MR | Zbl

O. Linton and Y.-J. Whang, The quantilogram: with an application to evaluating directional predictability. J. Econ. 141 (2007) 250–282. | DOI | MR | Zbl

P. Muliere and S. Petrone, Generalized Lorenz curve and monotone dependence orderings. Metron L (1992) 19–38. | MR | Zbl

K.R.M. Nair and N. Sreelakshmi, The new Zenga curve in the context of reliability analysis. Commun. Stat. Theory Methods 45 (2016) 6540–6552. | DOI | MR | Zbl

C.R. Rao and L.C. Zhao, Convergence theorems for empirical cumulative quantile regression functions. Math. Methods Statist. 4 (1995a) 81–91. | MR | Zbl

C.R. Rao and L.C. Zhao, Correction. Convergence theorems for empirical cumulative quantile regression functions. Math. Methods Statist. 4 (1995b) 359. | MR

O. Scaillet, A Kolmogorov−Smirnov type test for positive quadrant dependence. Canadian J. Statist. 33 (2005) 415–427. | DOI | MR | Zbl

E. Schechtman, A. Shelef, S. Ytzhaki and R. Zitikis, Testing hypotheses about absolute concentration curves and marginal conditional stochastic dominance. Econom. Theory 24 (2008) 1044–1062. | DOI | Zbl

S.M. Tse, On the cumulative quantile regression process. Math. Methods Statist. 18 (2009) 270–279. | DOI | MR | Zbl

V.S. Tsirel’son, The density of the distribution of the maximum of a Gaussian process. Theory of Probab. Appl. 20 (1975) 847–856. | Zbl

R. Wright, Expectation dependence of random variables, with an application in portfolio theory. Theory Decis. 22 (1987) 111–124. | DOI | MR | Zbl

T. Yanagimoto, Families of positively dependent random variables. Ann. Inst. Statist. Math. 24 (1972) 559–573. | DOI | MR | Zbl

T. Yanagimoto and M. Sibuya, Stochastically larger component of a random vector. Ann. Institute Statist. Math. 24 (1972) 259–269. | DOI | MR | Zbl

M. Zenga, Inequality curve and inequality index based on the ratios between lower and upper arithmetic means. Statist. Appl. (2007) 3–27.

X. Zhu, X. Guo, L. Lin and L. Zhu, Testing for positive expectation dependence. Ann. Inst. Statist. Math. 68 (2016) 135–153. | DOI | MR | Zbl

Cité par Sources :