Further refinement of self-normalized Cramér-type moderate deviations
ESAIM: Probability and Statistics, Tome 21 (2017), pp. 201-219.

In this paper, we study the self-normalized Cramér-type moderate deviations for centered independent random variables X 1 ,X 2 ,... with 0<E|X i | 3 <. The main results refine Theorems 1.1 and 1.2 of Wang [Q. Wang, J. Theoret. Probab. 24 (2011) 307–329], the Berry−Esseen bound (2.11) and Corollaries 2.2 and 2.3 of Jing, et al. [B.Y. Jing, Q.M. Shao and Q. Wang, Ann. Probab. 31 (2003) 2167–2215] under stronger moment conditions.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2017010
Classification : 60F10, 62E20
Mots clés : Cramér-type moderate deviations, self-normalized sums, normal approximation
Sang, Hailin 1 ; Ge, Lin 2

1 Department of Mathematics, The University of Mississippi, University, MS 38677, Oxford, USA
2 Division of Arts and Sciences, Mississippi State University at Meridian, Meridian, MS 39307, Oxford, USA
@article{PS_2017__21__201_0,
     author = {Sang, Hailin and Ge, Lin},
     title = {Further refinement of self-normalized {Cram\'er-type} moderate deviations},
     journal = {ESAIM: Probability and Statistics},
     pages = {201--219},
     publisher = {EDP-Sciences},
     volume = {21},
     year = {2017},
     doi = {10.1051/ps/2017010},
     mrnumber = {3716127},
     zbl = {1393.60032},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2017010/}
}
TY  - JOUR
AU  - Sang, Hailin
AU  - Ge, Lin
TI  - Further refinement of self-normalized Cramér-type moderate deviations
JO  - ESAIM: Probability and Statistics
PY  - 2017
SP  - 201
EP  - 219
VL  - 21
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2017010/
DO  - 10.1051/ps/2017010
LA  - en
ID  - PS_2017__21__201_0
ER  - 
%0 Journal Article
%A Sang, Hailin
%A Ge, Lin
%T Further refinement of self-normalized Cramér-type moderate deviations
%J ESAIM: Probability and Statistics
%D 2017
%P 201-219
%V 21
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2017010/
%R 10.1051/ps/2017010
%G en
%F PS_2017__21__201_0
Sang, Hailin; Ge, Lin. Further refinement of self-normalized Cramér-type moderate deviations. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 201-219. doi : 10.1051/ps/2017010. http://www.numdam.org/articles/10.1051/ps/2017010/

M. Csörgő, B. Szyszkowicz and Q. Wang, Donsker’s theorem for self-normalized partial sums processes. Ann. Probab. 31 (2003) 1228–1240. | MR | Zbl

V.H. de la Peña, T.L. Lai and Q.M. Shao, Self-normalized Processes: Limit Theory and Statistical Applications. Probab. Appl. Springer, New York, Berlin (2009). | MR | Zbl

E. Giné, F. Götze and D. Mason, When is the student t-statistic asymptotically standard normal? Ann. Probab. 25 (1997) 1514–1531. | DOI | MR | Zbl

P. Griffin and J. Kuelbs, Self-normalized laws of the iterated logarithm. Ann. Probab. 17 (1989) 1571–1601. | DOI | MR | Zbl

P. Griffin and J. Kuelbs, Some extensions of the laws of the iterated logarithm via self-normalized. Ann. Probab. 19 (1991) 380–395. | DOI | MR | Zbl

B.Y. Jing, Q.M. Shao and Wang, Q. Self-normalized Cramér type large deviations for independent random variables. Ann. Probab. 31 (2003) 2167–2215. | MR | Zbl

B.Y. Jing, Q.M. Shao and W. Zhou, Saddlepoint approximation for Student’s t-statistic with no moment conditions. Ann. Statist. 32 (2004) 2679–2711. | MR | Zbl

V.V. Petrov, On the probabilities of large deviations for sums of independent random variables. Theory Probab. Appl. 10 (1965) 287–298. | DOI | MR | Zbl

V.V. Petrov, Sums of Independent Random Variables. Springer Verlag, New York, Heidelberg, Berlin (1975). | MR | Zbl

J. Robinson and Q. Wang, On the Self-Normalized Cramér-type Large Deviation. J. Theoret. Probab. 18 (2005) 891–906. | DOI | MR | Zbl

Q.M. Shao, Self-normalized large deviations. Ann. Probab. 25 (1997) 285–328. | MR | Zbl

Q.M. Shao, Recent developments on self-normalized limit theorems. Asymptotic Methods in Probability and Statistics. Edited by B. Szyskowicz. Elsevier, Amsterdam (1998) 467–480. | MR | Zbl

Q.M. Shao, A Cramér type large deviation result for Student’s t-statistic. J. Theoret. Probab. 12 (1999) 385–398. | DOI | MR | Zbl

Q.M. Shao, Recent progress on self-normalized limit theorems. Probability, Finance and insurance. World Sci. Publ., River Edge, NJ (2004) 50–68. | MR

Q.M. Shao and Q. Wang, Self-normalized limit theorems: A survey. Probab. Surveys. 10 (2013) 69–93. | MR | Zbl

Q. Wang, Limit theorems for self-normalized large deviations. Electron. J. Probab. 10 (2005) 1260–1285. | DOI | MR | Zbl

Q. Wang, Refined self-normalized large deviations for independent random variables. J. Theoret. Probab. 24 (2011) 307–329. | DOI | MR | Zbl

Q. Wang and B.Y. Jing, An exponential nonuniform Berry−Esseen bound for self-normalized sums. Ann. Probab. 27 (1999) 2068–2088. | MR | Zbl

Cité par Sources :