We consider a Brownian motion with negative drift in the quarter plane with orthogonal reflection on the axes. The Laplace transform of its stationary distribution satisfies a functional equation, which is reminiscent from equations arising in the enumeration of (discrete) quadrant walks. We develop a Tutte’s invariant approach to this continuous setting, and we obtain an explicit formula for the Laplace transform in terms of generalized Chebyshev polynomials.
Accepté le :
DOI : 10.1051/ps/2017006
Mots clés : Reflected Brownian motion in the quarter plane, stationary distribution, Laplace transform, Tutte’s invariant approach, generalized Chebyshev polynomials
@article{PS_2017__21__220_0, author = {Franceschi, S. and Raschel, Kilian}, title = {Tutte{\textquoteright}s invariant approach for {Brownian} motion reflected in the quadrant}, journal = {ESAIM: Probability and Statistics}, pages = {220--234}, publisher = {EDP-Sciences}, volume = {21}, year = {2017}, doi = {10.1051/ps/2017006}, mrnumber = {3743912}, zbl = {1393.60088}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2017006/} }
TY - JOUR AU - Franceschi, S. AU - Raschel, Kilian TI - Tutte’s invariant approach for Brownian motion reflected in the quadrant JO - ESAIM: Probability and Statistics PY - 2017 SP - 220 EP - 234 VL - 21 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2017006/ DO - 10.1051/ps/2017006 LA - en ID - PS_2017__21__220_0 ER -
%0 Journal Article %A Franceschi, S. %A Raschel, Kilian %T Tutte’s invariant approach for Brownian motion reflected in the quadrant %J ESAIM: Probability and Statistics %D 2017 %P 220-234 %V 21 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2017006/ %R 10.1051/ps/2017006 %G en %F PS_2017__21__220_0
Franceschi, S.; Raschel, Kilian. Tutte’s invariant approach for Brownian motion reflected in the quadrant. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 220-234. doi : 10.1051/ps/2017006. http://www.numdam.org/articles/10.1051/ps/2017006/
Analysis of models reducible to a class of diffusion processes in the positive quarter plane. SIAM J. Appl. Math. 47 (1987) 1367–1385. | DOI | MR | Zbl
and ,O. Bernardi, M. Bousquet-Mélou and K. Raschel, Counting quadrant walks via Tutte’s invariant method. In 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) (2016) 203–214.
M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane. In Algorithmic probability and combinatorics. Vol. 520 of Contemp. Math. Amer. Math. Soc. Providence, RI (2010) 1–39. | MR | Zbl
Obliquely reflected Brownian motion in non-smooth planar domains. Ann. Probab. 45 (2017) 2971–3037. | DOI | MR | Zbl
, , and ,J. Dai, Steady-state analysis of reflected Brownian motions: Characterization, numerical methods and queueing applications. ProQuest LLC, Ann Arbor, MI. Ph.D. thesis, Stanford University (1990). | MR
Nonnegativity of solutions to the basic adjoint relationship for some diffusion processes. Queueing Syst. 68 (2011) 295–303. | DOI | MR | Zbl
and ,J. Dai, S. Guettes and T. Kurtz, Characterization of the stationary distribution for a reflecting brownian motion in a convex polyhedron. Tech. Rep., Department of Mathematics, University of Wisconsin-Madison (2010).
Reflected Brownian motion in an orthant: numerical methods for steady-state analysis. Ann. Appl. Probab. 2 (1992) 65–86. | MR | Zbl
and ,J. Dai and T. Kurtz, Characterization of the stationary distribution for a semimartingale reflecting brownian motion in a convex polyhedron (1994).
Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution. Stoch. Syst. 1 (2011)146–208. | MR | Zbl
and ,Stationary distribution of a two-dimensional SRBM: geometric views and boundary measures. Queueing Syst. 74 (2013) 181–217. | DOI | MR | Zbl
and ,Reflected Brownian motion in a wedge: sum-of-exponential stationary densities. Electron. Commun. Probab.14 (2009) 1–16. | DOI | MR | Zbl
and ,G. Doetsch, Introduction to the theory and application of the Laplace transformation. Springer-Verlag, New York Heidelberg (1974). | MR | Zbl
Reflected planar Brownian motions, intertwining relations and crossing probabilities. Ann. Inst. Henri Poincaré Probab. Statist. 40 (2004) 539–552. | DOI | Numdam | MR | Zbl
,Lyapunov functions for semimartingale reflecting Brownian motions. Ann. Probab. 22 (1994) 680–702. | DOI | MR | Zbl
and ,G. Fayolle, R. Iasnogorodski and V. Malyshev, Random Walks in the Quarter-Plane. Springer Berlin Heidelberg, Berlin, Heidelberg (1999). | MR | Zbl
M. Foddy, Analysis of Brownian motion with drift, confined to a quadrant by oblique reflection (diffusions, Riemann-Hilbert problem). ProQuest LLC, Ann Arbor, MI. Ph.D. thesis, Stanford University (1984). | MR
Equilibria for diffusion models of pairs of communicating computers–symmetric case. IEEE Trans. Inform. Theory 28 (1982) 273–284. | DOI | MR | Zbl
,S. Franceschi and I. Kurkova, Asymptotic expansion for the stationary distribution of a reflected Brownian motion in the quarter plane. Preprint (2016). | arXiv | MR
S. Franceschi, I. Kurkova and K. Raschel, Analytic approach for reflected Brownian motion in the quadrant. In 27th Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA’16) (2016). | MR
Reflected Brownian motion in the quadrant: tail behavior of the stationary distribution. Queueing Syst. 61 (2009) 113–138. | DOI | MR | Zbl
and ,On the distribution of multidimensional reflected Brownian motion. SIAM J. Appl. Math. 41 (1981) 345–361. | DOI | MR | Zbl
and ,Brownian models of open queueing networks with homogeneous customer populations. Stochastics 22 (1987a) 77–115. | DOI | MR | Zbl
and ,Multidimensional reflected Brownian motions having exponential stationary distributions. Ann. Probab. 15 (1987b) 115–137. | DOI | MR | Zbl
and ,D. Hobson and L. Rogers, Recurrence and transience of reflecting Brownian motion in the quadrant. In vol. 113 of Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge Univ Press (1993) 387–399 | MR | Zbl
Mouvement brownien, cônes et processus stables. Probab. Theory Related Fields 76 (1987) 587–627. | DOI | MR | Zbl
,G. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift. Springer Netherlands, Dordrecht (2000). | MR | Zbl
An analytic method in the theory of two-dimensional positive random walks. Sibirsk. Mat. Ž. 13 (1972) 1314–1329, 1421. | MR | Zbl
,Chromatic sums revisited. Aequationes Math. 50 (1995) 95–134. | DOI | MR | Zbl
,R. Williams, Semimartingale reflecting Brownian motions in the orthant. In Stochastic networks. Vol. 71 of IMA Vol. Math. Appl. Springer, New York (1995) 125–137. | MR | Zbl
Cité par Sources :