A note on upper-patched generators for Archimedean copulas
ESAIM: Probability and Statistics, Tome 21 (2017), pp. 183-200.

The class of multivariate Archimedean copulas is defined by using a real-valued function called the generator of the copula. This generator satisfies some properties, including d-monotonicity. We propose here a new basic transformation of this generator, preserving these properties, thus ensuring the validity of the transformed generator and inducing a proper valid copula. This transformation acts only on a specific portion of the generator, it allows both the non-reduction of the likelihood on a given dataset, and the choice of the upper tail dependence coefficient of the transformed copula. Numerical illustrations show the utility of this construction, which can improve the fit of a given copula both on its central part and its tail.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2017003
Classification : 62H20, 62E20, 60E05, 62H05
Mots-clés : Archimedean copulas, transformations, distortions, tail dependence coefficients, likelihood
Di Bernardino, Elena 1 ; Rullière, Didier 2

1 Elena Di Bernardino, CNAM, Paris, EA4629, Département IMATH, 292 rue Saint-Martin, Paris cedex 03, France.
2 Didier Rullière, Université de Lyon, Université Lyon 1, ISFA, Laboratoire SAF, 50 avenue Tony Garnier, 69366 Lyon, France.
@article{PS_2017__21__183_0,
     author = {Di Bernardino, Elena and Rulli\`ere, Didier},
     title = {A note on upper-patched generators for {Archimedean} copulas},
     journal = {ESAIM: Probability and Statistics},
     pages = {183--200},
     publisher = {EDP-Sciences},
     volume = {21},
     year = {2017},
     doi = {10.1051/ps/2017003},
     mrnumber = {3716126},
     zbl = {1395.62134},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2017003/}
}
TY  - JOUR
AU  - Di Bernardino, Elena
AU  - Rullière, Didier
TI  - A note on upper-patched generators for Archimedean copulas
JO  - ESAIM: Probability and Statistics
PY  - 2017
SP  - 183
EP  - 200
VL  - 21
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2017003/
DO  - 10.1051/ps/2017003
LA  - en
ID  - PS_2017__21__183_0
ER  - 
%0 Journal Article
%A Di Bernardino, Elena
%A Rullière, Didier
%T A note on upper-patched generators for Archimedean copulas
%J ESAIM: Probability and Statistics
%D 2017
%P 183-200
%V 21
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2017003/
%R 10.1051/ps/2017003
%G en
%F PS_2017__21__183_0
Di Bernardino, Elena; Rullière, Didier. A note on upper-patched generators for Archimedean copulas. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 183-200. doi : 10.1051/ps/2017003. http://www.numdam.org/articles/10.1051/ps/2017003/

S. Aulbach, M. Falk and M. Hofmann, The multivariate piecing-together approach revisited. Special Issue on Copula Modeling and Dependence. J. Multivariate Anal. 110 (2012) 161–170. | DOI | MR | Zbl

N.H. Bingham, C.M. Goldie and J.L. Teugels, vol. 27 of Regular variation. Cambridge university press (1989). | MR | Zbl

M. Binois, D. Rullière and O. Roustant, On the estimation of pareto fronts from the point of view of copula theory. Infor. Sci. 324 (2015) 270–285. | DOI | Zbl

E.C. Brechmann, Hierarchical kendall copulas: Properties and inference. Canadian J. Statist. 42 (2014) 78–108. | DOI | MR | Zbl

A. Charpentier and J. Segers, Lower tail dependence for Archimedean copulas: characterizations and pitfalls. Insur. Math. Econ. 40 (2007) 525–532. | DOI | MR | Zbl

A. Charpentier and J. Segers, Tails of multivariate Archimedean copulas. J. Multivar. Anal. 100 (2009) 1521–1537. | DOI | MR | Zbl

K.C. Cheung, Upper comonotonicity. Insur. Math. Econ. 45 (2009) 35–40. | DOI | MR | Zbl

A. Cousin and E.D. Bernardino, On multivariate extensions of value-at-risk. J. Multivar. Anal. 119 (2013) 32–46. | DOI | MR | Zbl

L. de Haan and A. Ferreira, Extreme Value Theory. An Introduction. Springer Series in Operations Research and Financial Engineering. (2006). | MR | Zbl

G. De Luca and G. Rivieccio, Multivariate tail dependence coefficients for Archimedean copulae. In Advanced Statistical Methods for the Analysis of Large Data-Sets. Springer (2012) 287–296.

E. Di Bernardino and D. Rullière, Distortions of multivariate distribution functions and associated level curves: Applications in multivariate risk theory. Insur. Math. Econ. 53 (2013a) 190–205. | DOI | MR | Zbl

E. Di Bernardino and D. Rullière, On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators. Dependence Model. 1 (2013b) 1–36. | DOI | Zbl

E. Di Bernardino and D. Rullière, Estimation of multivariate critical layers: Applications to rainfall data. J. Soc. Française Stat. 156 (2015) 11–50. | Numdam | MR | Zbl

E. Di Bernardino and D. Rullière, On tail dependence coefficients of transformed multivariate Archimedean copulas. Fuzzy Sets Syst. 284 (2016) 89–112. | DOI | MR | Zbl

D.S. Dimitrova, V.K. Kaishev and S.I. Penev, Ged spline estimation of multivariate Archimedean copulas. Comput. Stat. Data Anal. 52 (2008) 3570–3582. | DOI | MR | Zbl

F. Durante, J. Fernàndez−Sànchez andR. Pappadà, Copulas, diagonals, and tail dependence. Fuzzy Sets Syst. 264 (2015) 22–41. | DOI | MR

F. Durante, J.F. Sànchez and C. Sempi, Multivariate patchwork copulas: A unified approach with applications to partial comonotonicity. Insurance: Math. Econ. 53 (2013) 897–905. | MR | Zbl

V. Durrleman, A. Nikeghbali and T. Roncalli, A simple transformation of copulas. Technical report, Groupe de Research Operationnelle Credit Lyonnais (2000).

C. Genest, K. Ghoudi and L.-P. Rivest, A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82 (1995) 543–552. | DOI | MR | Zbl

C. Genest, J. Neslehovà and J. Ziegel, Inference in multivariate Archimedean copula models. TEST 20 (2011) 223–256. | DOI | MR | Zbl

C. Genest and L.-P. Rivest, Statistical inference procedures for bivariate Archimedean copulas. J. Am. Stat. Assoc. 88 1034–1043. | MR | Zbl

M. Hofert, Sampling Archimedean copulas. Comput. Statist. Data Anal. 52 (2008) 5163–5174. | DOI | MR | Zbl

M. Hofert, Construction and sampling of nested Archimedean copulas. In Copula Theory and Its Applications, P. Jaworski, F. Durante, W. Härdle and T. Rychlik. Springer, Berlin (2010). | MR

A. Juri and M.V. Wüthrich, Tail dependence from a distributional point of view. Extremes 6 (2003) 213–246. | DOI | MR | Zbl

G. Kim, M.J. Silvapulle and P. Silvapulle, Comparison of semiparametric and parametric methods for estimating copulas. Comput. Stat. Data Anal. 51 (2007) 2836–2850. | DOI | MR | Zbl

E.P. Klement, R. Mesiar and E. Pap, Transformations of copulas. Kybernetika (Prague) 41 (2005) 425–434. | MR | Zbl

P. Lambert, Archimedean copula estimation using bayesian splines smoothing techniques. Comput. Stat. Data Anal. 51 (2007) 6307–6320. | DOI | MR | Zbl

H. Li, Orthant tail dependence of multivariate extreme value distributions. J. Multivar. Anal. 100 (2009) 243–256. | DOI | MR | Zbl

A. McNeil, Sampling nested Archimedean copulas. J. Stat. Comput. Simulat. (2008) 567–581. | MR | Zbl

A. Mcneil and J. Nešlehová, Multivariate Archimedean copulas, d-monotone functions and l 1 -norm symmetric distributions. Ann. Statist. 37 (2009) 3059–3097. | DOI | MR | Zbl

P.M. Morillas, A method to obtain new copulas from a given one. Metrika 61 (2005) 169–184. | DOI | MR | Zbl

R.B. Nelsen, An introduction to copulas. Vol. 139 of Lect. Notes Statist. Springer Verlag, New York (1999). | MR | Zbl

R. Schmidt and U. Stadtmüller, Non-parametric estimation of tail dependence. Scand. J. Stat. Theory Appl. 33 (2006) 307–335. | DOI | MR | Zbl

K.F. Siburg and P.A. Stoimenov, Gluing copulas. Commun. Stat., Theory Methods 37 (2008) 3124–3134. | DOI | MR | Zbl

E. Valdez and Y. Xiao, On the distortion of a copula and its margins. Scand. Actuar. J. 4 (2011) 292–317. | DOI | MR | Zbl

G. Venter, Tails of copulas. In Proceedings ASTIN Washington (2001) 68–113.

Cité par Sources :