The class of multivariate Archimedean copulas is defined by using a real-valued function called the generator of the copula. This generator satisfies some properties, including -monotonicity. We propose here a new basic transformation of this generator, preserving these properties, thus ensuring the validity of the transformed generator and inducing a proper valid copula. This transformation acts only on a specific portion of the generator, it allows both the non-reduction of the likelihood on a given dataset, and the choice of the upper tail dependence coefficient of the transformed copula. Numerical illustrations show the utility of this construction, which can improve the fit of a given copula both on its central part and its tail.
Accepté le :
DOI : 10.1051/ps/2017003
Mots clés : Archimedean copulas, transformations, distortions, tail dependence coefficients, likelihood
@article{PS_2017__21__183_0, author = {Di Bernardino, Elena and Rulli\`ere, Didier}, title = {A note on upper-patched generators for {Archimedean} copulas}, journal = {ESAIM: Probability and Statistics}, pages = {183--200}, publisher = {EDP-Sciences}, volume = {21}, year = {2017}, doi = {10.1051/ps/2017003}, mrnumber = {3716126}, zbl = {1395.62134}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2017003/} }
TY - JOUR AU - Di Bernardino, Elena AU - Rullière, Didier TI - A note on upper-patched generators for Archimedean copulas JO - ESAIM: Probability and Statistics PY - 2017 SP - 183 EP - 200 VL - 21 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2017003/ DO - 10.1051/ps/2017003 LA - en ID - PS_2017__21__183_0 ER -
%0 Journal Article %A Di Bernardino, Elena %A Rullière, Didier %T A note on upper-patched generators for Archimedean copulas %J ESAIM: Probability and Statistics %D 2017 %P 183-200 %V 21 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2017003/ %R 10.1051/ps/2017003 %G en %F PS_2017__21__183_0
Di Bernardino, Elena; Rullière, Didier. A note on upper-patched generators for Archimedean copulas. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 183-200. doi : 10.1051/ps/2017003. http://www.numdam.org/articles/10.1051/ps/2017003/
The multivariate piecing-together approach revisited. Special Issue on Copula Modeling and Dependence. J. Multivariate Anal. 110 (2012) 161–170. | DOI | MR | Zbl
, and ,N.H. Bingham, C.M. Goldie and J.L. Teugels, vol. 27 of Regular variation. Cambridge university press (1989). | MR | Zbl
On the estimation of pareto fronts from the point of view of copula theory. Infor. Sci. 324 (2015) 270–285. | DOI | Zbl
, and ,Hierarchical kendall copulas: Properties and inference. Canadian J. Statist. 42 (2014) 78–108. | DOI | MR | Zbl
,Lower tail dependence for Archimedean copulas: characterizations and pitfalls. Insur. Math. Econ. 40 (2007) 525–532. | DOI | MR | Zbl
and ,Tails of multivariate Archimedean copulas. J. Multivar. Anal. 100 (2009) 1521–1537. | DOI | MR | Zbl
and ,Upper comonotonicity. Insur. Math. Econ. 45 (2009) 35–40. | DOI | MR | Zbl
,On multivariate extensions of value-at-risk. J. Multivar. Anal. 119 (2013) 32–46. | DOI | MR | Zbl
and ,L. de Haan and A. Ferreira, Extreme Value Theory. An Introduction. Springer Series in Operations Research and Financial Engineering. (2006). | MR | Zbl
G. De Luca and G. Rivieccio, Multivariate tail dependence coefficients for Archimedean copulae. In Advanced Statistical Methods for the Analysis of Large Data-Sets. Springer (2012) 287–296.
Distortions of multivariate distribution functions and associated level curves: Applications in multivariate risk theory. Insur. Math. Econ. 53 (2013a) 190–205. | DOI | MR | Zbl
and ,On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators. Dependence Model. 1 (2013b) 1–36. | DOI | Zbl
and ,Estimation of multivariate critical layers: Applications to rainfall data. J. Soc. Française Stat. 156 (2015) 11–50. | Numdam | MR | Zbl
and ,On tail dependence coefficients of transformed multivariate Archimedean copulas. Fuzzy Sets Syst. 284 (2016) 89–112. | DOI | MR | Zbl
and ,Ged spline estimation of multivariate Archimedean copulas. Comput. Stat. Data Anal. 52 (2008) 3570–3582. | DOI | MR | Zbl
, and ,J. Fernàndez−Sànchez andR. Pappadà, Copulas, diagonals, and tail dependence. Fuzzy Sets Syst. 264 (2015) 22–41. | DOI | MR
,Multivariate patchwork copulas: A unified approach with applications to partial comonotonicity. Insurance: Math. Econ. 53 (2013) 897–905. | MR | Zbl
, and ,V. Durrleman, A. Nikeghbali and T. Roncalli, A simple transformation of copulas. Technical report, Groupe de Research Operationnelle Credit Lyonnais (2000).
A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82 (1995) 543–552. | DOI | MR | Zbl
, and ,Inference in multivariate Archimedean copula models. TEST 20 (2011) 223–256. | DOI | MR | Zbl
, and ,C. Genest and L.-P. Rivest, Statistical inference procedures for bivariate Archimedean copulas. J. Am. Stat. Assoc. 88 1034–1043. | MR | Zbl
Sampling Archimedean copulas. Comput. Statist. Data Anal. 52 (2008) 5163–5174. | DOI | MR | Zbl
,M. Hofert, Construction and sampling of nested Archimedean copulas. In Copula Theory and Its Applications, P. Jaworski, F. Durante, W. Härdle and T. Rychlik. Springer, Berlin (2010). | MR
Tail dependence from a distributional point of view. Extremes 6 (2003) 213–246. | DOI | MR | Zbl
and ,Comparison of semiparametric and parametric methods for estimating copulas. Comput. Stat. Data Anal. 51 (2007) 2836–2850. | DOI | MR | Zbl
, and ,Transformations of copulas. Kybernetika (Prague) 41 (2005) 425–434. | MR | Zbl
, and ,Archimedean copula estimation using bayesian splines smoothing techniques. Comput. Stat. Data Anal. 51 (2007) 6307–6320. | DOI | MR | Zbl
,Orthant tail dependence of multivariate extreme value distributions. J. Multivar. Anal. 100 (2009) 243–256. | DOI | MR | Zbl
,A. McNeil, Sampling nested Archimedean copulas. J. Stat. Comput. Simulat. (2008) 567–581. | MR | Zbl
Multivariate Archimedean copulas, d-monotone functions and norm symmetric distributions. Ann. Statist. 37 (2009) 3059–3097. | DOI | MR | Zbl
and ,A method to obtain new copulas from a given one. Metrika 61 (2005) 169–184. | DOI | MR | Zbl
,R.B. Nelsen, An introduction to copulas. Vol. 139 of Lect. Notes Statist. Springer Verlag, New York (1999). | MR | Zbl
Non-parametric estimation of tail dependence. Scand. J. Stat. Theory Appl. 33 (2006) 307–335. | DOI | MR | Zbl
and ,Gluing copulas. Commun. Stat., Theory Methods 37 (2008) 3124–3134. | DOI | MR | Zbl
and ,On the distortion of a copula and its margins. Scand. Actuar. J. 4 (2011) 292–317. | DOI | MR | Zbl
and ,G. Venter, Tails of copulas. In Proceedings ASTIN Washington (2001) 68–113.
Cité par Sources :