The purpose of this paper is to investigate the moving window rule of classification to classify functions under mixing conditions. We consider a random variable
Mots-clés : Bayes rule, training data, moving window rule, mixing condition, consistency
@article{PS_2017__21__452_0, author = {Younso, Ahmad}, title = {On nonparametric classification for weakly dependent functional processes}, journal = {ESAIM: Probability and Statistics}, pages = {452--466}, publisher = {EDP-Sciences}, volume = {21}, year = {2017}, doi = {10.1051/ps/2017002}, mrnumber = {3743922}, zbl = {1395.62095}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ps/2017002/} }
TY - JOUR AU - Younso, Ahmad TI - On nonparametric classification for weakly dependent functional processes JO - ESAIM: Probability and Statistics PY - 2017 SP - 452 EP - 466 VL - 21 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ps/2017002/ DO - 10.1051/ps/2017002 LA - en ID - PS_2017__21__452_0 ER -
Younso, Ahmad. On nonparametric classification for weakly dependent functional processes. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 452-466. doi : 10.1051/ps/2017002. https://www.numdam.org/articles/10.1051/ps/2017002/
On the kernel rule for function classification. Ann. Inst. Statist. Math. 58 (2006) 619–633. | DOI | MR | Zbl
, and ,H.C.P. Berbee, Random walks with stationary increments and renewal theory. Math. Cent. Tract. Amsterdam (1979). | MR | Zbl
Functional supervised classification with wavelets. Ann. l’ISUP 52 (2008) 61–80. | MR
, and ,Autoregressive forecasting of some functional climatic variations. Scand. J. Statist. 27 (2000) 673–687. | DOI | Zbl
, and ,D. Bosq, Nonparametric Statistics for Stochastic Processes. Springer Verlag, New York (1998). | MR | Zbl
Approximations theorems for strongly mixing random variables. Michigan Math. J. 30 (1983) 69–81. | DOI | MR | Zbl
,Nearest neighbor classification in infinite dimension. ESAIM: PS 10 (2006) 340–355. | DOI | Numdam | MR | Zbl
and ,S. Dabo-Niang and F. Ferraty, Functional and Operatorial Statistics. Physica Verlag, Springer, Heidelberg (2008). | MR | Zbl
The inclusion of exogenous variables in functional autoregressive ozone forecasting. Environmetrics 13 (2002) 759–774. | DOI
and ,L. Devroye, L. Györfi and G. Lugosi, A probabilitic Theory of Pattern Recognition. Springer Verlag, New York (1996). | MR | Zbl
An equivalence theorem for L
The functional central limit theorem for strongly mixing processes. Ann. Inst. Henri Poincaré Probab. Statist. 30 (1994) 63–82. | Numdam | MR | Zbl
, and ,Invariance principles for absolutely regular empirical processes. Ann. Inst. Henri Poincaré Probab. Statist. 31 (1995) 393–427. | Numdam | MR | Zbl
, and ,M. Febrero−Bande and M. Oviedo de la Fuente, Statistical computing in functional data analysis: The R package fda.usc. J. Statist. Software 51 (2012).
F. Ferraty and P. Vieu, The functional nonparametric model and application to spectrometric data. Comput. Statist. (2002) 17–564. | MR | Zbl
Curves discrimination: A nonparametric functional approach. Comput. Statist. Data Anal. 44 (2003) 161–173. | DOI | MR | Zbl
and ,F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis. Springer Verlag, New York (2006). | MR | Zbl
Additive prediction and boosting for functional data. Comput. Statist. Data Anal. 53 (2009) 1400–1413. | DOI | MR | Zbl
and ,Nonparametric estimation of the mode of a distribution of random curves. J. Roy. Statist. Soc. 60 (1998) 681–691. | DOI | MR | Zbl
, and ,Classification problems based on regression models for multi-dimensional functional data. Stat. Trans. New Series 16 (2015) 97–110. | DOI
, and ,A functional data-analytic approach to signal discrimination. Technometrics 43 (2001) 140–143. | DOI | MR | Zbl
, and ,Weakly dependent functional data. Ann. Statist. 38 (2010) 1845–1884. | DOI | MR | Zbl
and ,A.S. Kechris, Classical descriptive set theory. Springer Verlag, New York (1995). | MR | Zbl
Functional regression in short-term prediction of economic time series. Stat. Trans. New Series 15 (2014) 611–626.
,Rate of convergence of nearest neighbor estimation under arbitrary sampling. IEEE Trans. Inform. Theory 41 (1995) 1028–1039. | DOI | MR | Zbl
and ,On estimating regression. Theory Probab. Appl. 9 (1964) 141–142. | DOI
,On estimation of a probability density function and mode. Ann. Math. Statist. 33 (1962) 1065–1076. | DOI | MR | Zbl
,Nonparametric regression for functional data: automatic smoothing parameter selection. J. Statist. Plan. Inference 137 (2007) 2784–2801. | DOI | MR | Zbl
and ,J.O. Ramsay, G. Hooker and S. Graves, Functional Data Analysis with R and Matlab. Springer Verlag, New York (2009). | Zbl
J.O. Ramsay and B.W. Silverman, Applied Functional Data Analysis. Methods and Case Sudies. Springer Verlag, New York (2002). | MR
J.O. Ramsay and B.W. Silverman, Functional Data Analysis. Springer Verlag, New York (1997). | MR | Zbl
Estimating the mean and covariance structure nonparametrically when the data are curves. Roy. Statist. Soc. 53 (1991) 233–243. | MR | Zbl
and ,E. Rio, Théorie asymptotique des processus aléatoires faiblement dépendants. Springer Verlag, Berlin Heidelberg (2000). | MR | Zbl
A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci., USA 42 (1956) 43–47. | DOI | MR | Zbl
,Consistent nonparametric regression. Ann. Statist. 5 (1977) 595–620. | DOI | MR | Zbl
,Spatial regression estimation for functional data with spatial dependency. J. Soc. Française Statist. 155 (2014) 138–160. | Numdam | MR | Zbl
,Inequalities for absolutely sequence. Application to density estimation. Probab. Theory Relat. Fields 107 (1997) 467–492. | DOI | MR | Zbl
,Smooth regression analysis. Sankhya Ser. A 26 (1964) 359–372. | MR | Zbl
,Cité par Sources :