On nonparametric classification for weakly dependent functional processes
ESAIM: Probability and Statistics, Tome 21 (2017), pp. 452-466.

The purpose of this paper is to investigate the moving window rule of classification to classify functions under mixing conditions. We consider a random variable X taking values in a metric space (,ρ) with label Y{0,1}. We extend some results on consistency and strong consistency of the moving window rule from the i.i.d. case to the weakly dependent case under mild assumptions. The practical use of the moving window rule will be illustrated through a simulation study. The performance of the moving window rule is investigated.

DOI : 10.1051/ps/2017002
Classification : 62G08
Mots clés : Bayes rule, training data, moving window rule, mixing condition, consistency
Younso, Ahmad 1

1 Department of mathematical statistics, Faculty of sciences, Damascus University, Syria.
@article{PS_2017__21__452_0,
     author = {Younso, Ahmad},
     title = {On nonparametric classification for weakly dependent functional processes},
     journal = {ESAIM: Probability and Statistics},
     pages = {452--466},
     publisher = {EDP-Sciences},
     volume = {21},
     year = {2017},
     doi = {10.1051/ps/2017002},
     mrnumber = {3743922},
     zbl = {1395.62095},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2017002/}
}
TY  - JOUR
AU  - Younso, Ahmad
TI  - On nonparametric classification for weakly dependent functional processes
JO  - ESAIM: Probability and Statistics
PY  - 2017
SP  - 452
EP  - 466
VL  - 21
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2017002/
DO  - 10.1051/ps/2017002
LA  - en
ID  - PS_2017__21__452_0
ER  - 
%0 Journal Article
%A Younso, Ahmad
%T On nonparametric classification for weakly dependent functional processes
%J ESAIM: Probability and Statistics
%D 2017
%P 452-466
%V 21
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2017002/
%R 10.1051/ps/2017002
%G en
%F PS_2017__21__452_0
Younso, Ahmad. On nonparametric classification for weakly dependent functional processes. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 452-466. doi : 10.1051/ps/2017002. http://www.numdam.org/articles/10.1051/ps/2017002/

C. Abraham, G. Biau and B. Cadre, On the kernel rule for function classification. Ann. Inst. Statist. Math. 58 (2006) 619–633. | DOI | MR | Zbl

H.C.P. Berbee, Random walks with stationary increments and renewal theory. Math. Cent. Tract. Amsterdam (1979). | MR | Zbl

A. Berlinet, G. Biau and L. Rouviére, Functional supervised classification with wavelets. Ann. l’ISUP 52 (2008) 61–80. | MR

P. Besse, H. Cardot and D. Stephenson, Autoregressive forecasting of some functional climatic variations. Scand. J. Statist. 27 (2000) 673–687. | DOI | Zbl

D. Bosq, Nonparametric Statistics for Stochastic Processes. Springer Verlag, New York (1998). | MR | Zbl

R.C. Bradley, Approximations theorems for strongly mixing random variables. Michigan Math. J. 30 (1983) 69–81. | DOI | MR | Zbl

F. Cérou and A. Guyader, Nearest neighbor classification in infinite dimension. ESAIM: PS 10 (2006) 340–355. | DOI | Numdam | MR | Zbl

S. Dabo-Niang and F. Ferraty, Functional and Operatorial Statistics. Physica Verlag, Springer, Heidelberg (2008). | MR | Zbl

J. Damon and S. Guillas, The inclusion of exogenous variables in functional autoregressive ozone forecasting. Environmetrics 13 (2002) 759–774. | DOI

L. Devroye, L. Györfi and G. Lugosi, A probabilitic Theory of Pattern Recognition. Springer Verlag, New York (1996). | MR | Zbl

L. Devroye and A. Krzyzak, An equivalence theorem for L 1 convergence of the kernel regression estimate. J. Stat. Plan. Inference 23 (1989) 71–82. | DOI | MR | Zbl

P. Doukhan, P. Massart and E. Rio, The functional central limit theorem for strongly mixing processes. Ann. Inst. Henri Poincaré Probab. Statist. 30 (1994) 63–82. | Numdam | MR | Zbl

P. Doukhan, P. Massart and E. Rio, Invariance principles for absolutely regular empirical processes. Ann. Inst. Henri Poincaré Probab. Statist. 31 (1995) 393–427. | Numdam | MR | Zbl

M. Febrero−Bande and M. Oviedo de la Fuente, Statistical computing in functional data analysis: The R package fda.usc. J. Statist. Software 51 (2012).

F. Ferraty and P. Vieu, The functional nonparametric model and application to spectrometric data. Comput. Statist. (2002) 17–564. | MR | Zbl

F. Ferraty and P. Vieu, Curves discrimination: A nonparametric functional approach. Comput. Statist. Data Anal. 44 (2003) 161–173. | DOI | MR | Zbl

F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis. Springer Verlag, New York (2006). | MR | Zbl

F. Ferraty and P. Vieu, Additive prediction and boosting for functional data. Comput. Statist. Data Anal. 53 (2009) 1400–1413. | DOI | MR | Zbl

T. Gasser, P. Hall and B. Presnell, Nonparametric estimation of the mode of a distribution of random curves. J. Roy. Statist. Soc. 60 (1998) 681–691. | DOI | MR | Zbl

T. Górecki, M. Krzyśko and W. Wolyński, Classification problems based on regression models for multi-dimensional functional data. Stat. Trans. New Series 16 (2015) 97–110. | DOI

P. Hall, P. Poskitt and D. Presnell, A functional data-analytic approach to signal discrimination. Technometrics 43 (2001) 140–143. | DOI | MR | Zbl

S. Hörmann and P. Kokoszka, Weakly dependent functional data. Ann. Statist. 38 (2010) 1845–1884. | DOI | MR | Zbl

A.S. Kechris, Classical descriptive set theory. Springer Verlag, New York (1995). | MR | Zbl

A.N. Kolmogorov and V.M. Tihomirov, ϵ-entropy and ϵ-capacity of sets in functional spaces. Amer. Math. Soc. Transl. 17 (1961) 277–364. | MR | Zbl

D. Kosiorowski, Functional regression in short-term prediction of economic time series. Stat. Trans. New Series 15 (2014) 611–626.

S.R. Kulkarni and S.E. Posner, Rate of convergence of nearest neighbor estimation under arbitrary sampling. IEEE Trans. Inform. Theory 41 (1995) 1028–1039. | DOI | MR | Zbl

E.A. Nadaraya, On estimating regression. Theory Probab. Appl. 9 (1964) 141–142. | DOI

E. Parzen, On estimation of a probability density function and mode. Ann. Math. Statist. 33 (1962) 1065–1076. | DOI | MR | Zbl

M. Rachdi and P. Vieu, Nonparametric regression for functional data: automatic smoothing parameter selection. J. Statist. Plan. Inference 137 (2007) 2784–2801. | DOI | MR | Zbl

J.O. Ramsay, G. Hooker and S. Graves, Functional Data Analysis with R and Matlab. Springer Verlag, New York (2009). | Zbl

J.O. Ramsay and B.W. Silverman, Applied Functional Data Analysis. Methods and Case Sudies. Springer Verlag, New York (2002). | MR

J.O. Ramsay and B.W. Silverman, Functional Data Analysis. Springer Verlag, New York (1997). | MR | Zbl

J.A. Rice and B.W. Silverman, Estimating the mean and covariance structure nonparametrically when the data are curves. Roy. Statist. Soc. 53 (1991) 233–243. | MR | Zbl

E. Rio, Théorie asymptotique des processus aléatoires faiblement dépendants. Springer Verlag, Berlin Heidelberg (2000). | MR | Zbl

M. Rosenblatt, A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci., USA 42 (1956) 43–47. | DOI | MR | Zbl

C.J. Stone, Consistent nonparametric regression. Ann. Statist. 5 (1977) 595–620. | DOI | MR | Zbl

C. Ternynck, Spatial regression estimation for functional data with spatial dependency. J. Soc. Française Statist. 155 (2014) 138–160. | Numdam | MR | Zbl

G. Viennet, Inequalities for absolutely sequence. Application to density estimation. Probab. Theory Relat. Fields 107 (1997) 467–492. | DOI | MR | Zbl

G.S. Watson, Smooth regression analysis. Sankhya Ser. A 26 (1964) 359–372. | MR | Zbl

Cité par Sources :