We propose an unbiased Monte Carlo method to compute where is a Lipschitz function and an Ito process. This approach extends the method proposed in [16] to the case where is solution of a multidimensional stochastic differential equation with varying drift and diffusion coefficients. A variance reduction method relying on interacting particle systems is also developed.
Accepté le :
DOI : 10.1051/ps/2017001
Mots-clés : Unbiased estimate, linear parabolic PDEs, interacting particle systems
@article{PS_2017__21__56_0, author = {Doumbia, Mahamadou and Oudjane, Nadia and Warin, Xavier}, title = {Unbiased {Monte} {Carlo} estimate of stochastic differential equations expectations}, journal = {ESAIM: Probability and Statistics}, pages = {56--87}, publisher = {EDP-Sciences}, volume = {21}, year = {2017}, doi = {10.1051/ps/2017001}, mrnumber = {3630603}, zbl = {1372.65015}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2017001/} }
TY - JOUR AU - Doumbia, Mahamadou AU - Oudjane, Nadia AU - Warin, Xavier TI - Unbiased Monte Carlo estimate of stochastic differential equations expectations JO - ESAIM: Probability and Statistics PY - 2017 SP - 56 EP - 87 VL - 21 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2017001/ DO - 10.1051/ps/2017001 LA - en ID - PS_2017__21__56_0 ER -
%0 Journal Article %A Doumbia, Mahamadou %A Oudjane, Nadia %A Warin, Xavier %T Unbiased Monte Carlo estimate of stochastic differential equations expectations %J ESAIM: Probability and Statistics %D 2017 %P 56-87 %V 21 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2017001/ %R 10.1051/ps/2017001 %G en %F PS_2017__21__56_0
Doumbia, Mahamadou; Oudjane, Nadia; Warin, Xavier. Unbiased Monte Carlo estimate of stochastic differential equations expectations. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 56-87. doi : 10.1051/ps/2017001. http://www.numdam.org/articles/10.1051/ps/2017001/
P. Andersson and A. Kohatsu-Higa, Unbiased simulation of stochastic differential equations using parametrix expansions. To appear in Bernoulli [Online] Available on: http://www.bernoulli-society.org/index.php/publications/bernoulli-journal-papers (2016). | MR
A probabilistic interpretation of the parametrix mehod. Ann. Appl. Probab. 25 (2015) 3095–3138. | DOI | MR | Zbl
and ,Exact simulation of diffusions. Ann. Appl. Probab. 15 (2005) 2422–2444. | DOI | MR | Zbl
and ,Estimating security prices using simulation. Manage. Sci. 42 (1996) 269–285. | DOI | Zbl
and ,Numerical methods for strong solutions of stochastic differential equations: an overview. Proc. R. Soc. London, Series A 460 (2004) 373–402. | DOI | MR | Zbl
, and ,Localization and exact simulation of brownian motion-driven stochastic differential equations. Math. Oper. Res. 38 (2013) 591–616. | DOI | MR | Zbl
and ,P. Del Moral, Feynman-Kac formulae. Genealogical and interacting particle systems with applications. Probability and its Applications (New York). Springer Verlag, New York (2004). | MR | Zbl
P. Del Moral, Mean field simulation for Monte Carlo integration. Monographs on Statistics and applied Probability. Chapman and Hall (2013). | MR | Zbl
Efficient Monte Carlo simulation of security prices. Ann. Appl. Probab. 5 (1995) 897–905. | DOI | MR | Zbl
and ,Applications of Malliavin calculus to Monte Carlo methods in finance. Fin. Stoch. 3 (1999) 391–412. | DOI | MR | Zbl
, , , and ,Some applications of malliavin calculus to Monte Carlo methods in finance. Fin. Stoch. 3 (1999) 391–412. | MR
, , and ,Multilevel Monte Carlo path simulation. Oper. Res. 56 (2008) 607–617. | DOI | MR | Zbl
,P. Henry-Labordère, Countreparty risk valuation: A marked branching diffusion approach. Available at SSRN: http://ssrn.com/abstract=1995503 or (2012). | DOI
P. Henry-Labordère, N. Oudjane, X. Tan, N. Touzi and X. Warin, Branching diffusion representation of semilinear pdes and Monte Carlo approximations. Preprint (2016). | arXiv | MR
A numerical algorithm for a class of bsde via branching process. Stoch. Process. Appl. 124 (2014) 1112–1140. | DOI | MR | Zbl
, and ,P. Henry-Labordère, X. Tan and N. Touzi, Unbiased simulation of stochastic differential equations. To appear in Ann. Appl. Probab. (2016). | MR
Exact retrospective Monte Carlo computation of arithmetic average asian options. Monte Carlo Meth. Appl. 13 (2007) 135–171. | DOI | MR | Zbl
and ,P.E. Kloeden and E. Platen, Numerical solution of stochastic differential equations. Vol. 23 of Applications of Mathematics (New York). Springer Verlag, Berlin (1992). | MR | Zbl
Approximate integration of stochastic differential equations. Theory Probab. Appl. 19 (1975) 557–600. | DOI | MR | Zbl
,Unbiased estimation with square root convergence for sde models. Oper. Res. 63 (2015) 1026–1043. | DOI | MR | Zbl
and ,Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl. 8 (1990) 483–509. | DOI | MR | Zbl
and ,Cité par Sources :