We study the sensitivity of the densities of non degenerate diffusion processes and related Markov Chains with respect to a perturbation of the coefficients. Natural applications of these results appear in models with misspecified coefficients or for the investigation of the weak error of the Euler scheme with irregular coefficients.
Accepté le :
DOI : 10.1051/ps/2016028
Mots clés : Diffusion processes, Markov chains, parametrix, Hölder coefficients, bounded drifts
@article{PS_2017__21__88_0, author = {Konakov, Valentin and Kozhina, Anna and Menozzi, St\'ephane}, title = {Stability of {Densities} for {Perturbed} {Diffusions} and {Markov} {Chains}}, journal = {ESAIM: Probability and Statistics}, pages = {88--112}, publisher = {EDP-Sciences}, volume = {21}, year = {2017}, doi = {10.1051/ps/2016028}, mrnumber = {3630604}, zbl = {1371.60136}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2016028/} }
TY - JOUR AU - Konakov, Valentin AU - Kozhina, Anna AU - Menozzi, Stéphane TI - Stability of Densities for Perturbed Diffusions and Markov Chains JO - ESAIM: Probability and Statistics PY - 2017 SP - 88 EP - 112 VL - 21 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2016028/ DO - 10.1051/ps/2016028 LA - en ID - PS_2017__21__88_0 ER -
%0 Journal Article %A Konakov, Valentin %A Kozhina, Anna %A Menozzi, Stéphane %T Stability of Densities for Perturbed Diffusions and Markov Chains %J ESAIM: Probability and Statistics %D 2017 %P 88-112 %V 21 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2016028/ %R 10.1051/ps/2016028 %G en %F PS_2017__21__88_0
Konakov, Valentin; Kozhina, Anna; Menozzi, Stéphane. Stability of Densities for Perturbed Diffusions and Markov Chains. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 88-112. doi : 10.1051/ps/2016028. http://www.numdam.org/articles/10.1051/ps/2016028/
The fundamental solution of a linear parabolic equation containing a small parameter. Ill. J. Math. 3 (1959) 580–619. | MR | Zbl
,Expansion formulas for European options in a local volatility model. Inter. J. Theor. Appl. Fin. 13 (2010) 602–634. | DOI | MR | Zbl
, and ,R.F. Bass and E.A. Perkins, A new technique for proving uniqueness for martingale problems. From Probability to Geometry (I): Volume in Honor of the 60th Birthday of Jean–Michel Bismut (2009) 47–53. | Numdam | MR | Zbl
R. Bhattacharya and R. Rao, Normal approximations and asymptotic expansions. Wiley and sons (1976). | MR | Zbl
The law of the Euler scheme for stochastic differential equations, II. Convergence rate of the density. Monte-Carlo Methods and Appl. 2 (1996) 93–128. | DOI | MR | Zbl
and ,Parametrix approximation of diffusion transition densities. SIAM J. Fin. Math. 1 (2010) 833–867. | DOI | MR
, and ,H. Cramér and M.R. Leadbetter, Stationary and related stochastic processes: Sample function properties and their applications. Reprint of the 1967 original. Dover Publications, Inc., Mineola, NY (2004). | MR
Density estimates for a random noise propagating through a chain of differential equations. J. Funct. Anal. 259 (2010) 1577–1630. | DOI | MR | Zbl
and ,E.B. Dynkin, Markov Processes. Springer Verlag (1965). | MR | Zbl
A. Friedman, Partial Differential Equations of Parabolic Type. Prentice-Hall (1964). | MR | Zbl
A. Friedman, Stochastic differential equations. Chapmann-Hall (1975).
On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Annal. l’I.H.P. Probab. Stat. 29 (1993) 119–151. | Numdam | MR | Zbl
and ,Second-order linear equations of parabolic type. Uspehi Mat. Nauk 17 (1962) 3–146. | MR
, and ,Local limit theorems for transition densities of Markov chains converging to diffusions. Prob. Theory Relat. Fields 117 (2000) 551–587. | DOI | MR | Zbl
and ,Edgeworth type expansions for Euler schemes for stochastic differential equations. Monte Carlo Methods Appl. 8 (2002) 271–285. | DOI | MR | Zbl
and ,V. Konakov and S. Menozzi, Weak error for the Euler scheme of a diffusion with non-regular coefficients. Preprint (2016). | arXiv | MR
Explicit parametrix and local limit theorems for some degenerate diffusion processes. Ann. Inst. Henri Poincaré, Série B 46 (2010) 908–923. | Numdam | MR | Zbl
, and ,Symmetric stable laws and stable-like jump diffusions. Proc. London Math. Soc. 80 (2000) 725–768. | DOI | MR | Zbl
,N.V. Krylov, Lectures on elliptic and parabolic equations in Hölder spaces. Graduate Studies in Mathematics. Vol. 12. AMS (1996). | MR | Zbl
Parametrix techniques and martingale problems for some degenerate Kolmogorov equations. Electr. Commun. Prob. 17 (2011) 234–250. | MR | Zbl
,Rate of convergence of the Euler approximation for diffusion processes. Math. Nachr. 151 (1991) 233–239. | DOI | MR | Zbl
and ,Curvature and the eigenvalues of the Laplacian. J. Differ. Geom. 1 (1967) 43–69. | DOI | MR | Zbl
and ,Some estimates of the transition density of a nondegenerate diffusion Markov process. Ann. Probab. 19 (1991) 538–561. | MR | Zbl
,A.N. Shiryaev, Probability, 2nd Edition. Graduate Texts in Mathematics. Vol. 95. Springer-Verlag, New York (1996). | MR | Zbl
D.W. Stroock and S.R.S. Varadhan, Multidimensional diffusion processes. Springer-Verlag Berlin Heidelberg New York (1979). | MR | Zbl
Cité par Sources :