We study both a continuous time non-binary Galton−Watson random tree and its exploration (or height) process in the subcritical, critical and supercritical cases. We then renormalize our branching process and exploration process, and take the weak limit as the size of the population tends to infinity.
Accepté le :
DOI : 10.1051/ps/2016027
Mots-clés : Branching process, exploration process, local time, weak limit
@article{PS_2017__21__1_0, author = {Drame, Ibrahima and Pardoux, Etienne and Sow, A.B.}, title = {Non-binary branching process and {non-Markovian} exploration process}, journal = {ESAIM: Probability and Statistics}, pages = {1--33}, publisher = {EDP-Sciences}, volume = {21}, year = {2017}, doi = {10.1051/ps/2016027}, mrnumber = {3630601}, zbl = {1371.60148}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2016027/} }
TY - JOUR AU - Drame, Ibrahima AU - Pardoux, Etienne AU - Sow, A.B. TI - Non-binary branching process and non-Markovian exploration process JO - ESAIM: Probability and Statistics PY - 2017 SP - 1 EP - 33 VL - 21 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2016027/ DO - 10.1051/ps/2016027 LA - en ID - PS_2017__21__1_0 ER -
%0 Journal Article %A Drame, Ibrahima %A Pardoux, Etienne %A Sow, A.B. %T Non-binary branching process and non-Markovian exploration process %J ESAIM: Probability and Statistics %D 2017 %P 1-33 %V 21 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2016027/ %R 10.1051/ps/2016027 %G en %F PS_2017__21__1_0
Drame, Ibrahima; Pardoux, Etienne; Sow, A.B. Non-binary branching process and non-Markovian exploration process. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 1-33. doi : 10.1051/ps/2016027. http://www.numdam.org/articles/10.1051/ps/2016027/
The continuum random tree. I. Ann. Probab. 19 (1991) 1–28. | DOI | MR | Zbl
,Binary trees, exploration processes, and an extended ray-knight theorem. J. Appl. Probab. 49 (2012) 210–225. | DOI | MR | Zbl
, and ,P. Billingsley, Probability and Measure, 3nd edition. John Wiley, New York (1995). | MR | Zbl
P. Billingsley, Convergence of Probability Measures, 2nd edition. John Wiley, New York (1999). | MR
E.Çınlar, Probability and Stochastics. Graduate Texts in Mathematics. Vol. 261. Springer (2011). | MR | Zbl
Height process for super-critical continuous state branching process. Markov Process. Relat. Fields 14 (2008) 309–326. | MR | Zbl
,On the convergence of sequences of branching processes. Ann. Probab. 2 (1974) 1027–1045. | DOI | MR | Zbl
,Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. Appl. Probab. 18 (1986) 20–65. | DOI | MR | Zbl
and ,Branching processes in Lévy processes: The exploration process. Ann. probab. 26 (1998) 213–252. | MR | Zbl
and ,Trees under attack: a Ray–Knight representation of Feller’s branching diffusion with logistic growth. Probab. Theory Relat. Fields 155 (2013) 583–619. | DOI | MR | Zbl
, and ,Quasi-stationnary distributions and population processes. Probab. Surv. 9 (2012) 340−410. | DOI | MR | Zbl
and ,E. Pardoux, Probabilistic models of population evolution scaling limits and interactions. Springer (2015). | MR
Stochastic differential equations with reflecting boundary conditions. Commun. Pure Appl. Math. 37 (1984) 511–537. | DOI | MR | Zbl
and ,P.E. Protter, Stochastic Integration and Differential Equations: Version 2.1. Vol. 21. Springer (2004). | MR | Zbl
Diffusion processes with boundary conditions. Commun. Pure Appl. Math. 24 (1971) 147–225. | DOI | MR | Zbl
and ,Cité par Sources :