Non-binary branching process and non-Markovian exploration process
ESAIM: Probability and Statistics, Tome 21 (2017), pp. 1-33.

We study both a continuous time non-binary Galton−Watson random tree and its exploration (or height) process in the subcritical, critical and supercritical cases. We then renormalize our branching process and exploration process, and take the weak limit as the size of the population tends to infinity.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2016027
Classification : 60J80, 60J85, 92D25
Mots-clés : Branching process, exploration process, local time, weak limit
Drame, Ibrahima 1, 2 ; Pardoux, Etienne 1, 2 ; Sow, A.B. 2

1 Aix-Marseille Univ., CNRS, Centrale Marseille, I2M, Marseille, France.
2 LERSTAD, Université Gaston Berger, BP 234, Saint Louis, Sénégal.
@article{PS_2017__21__1_0,
     author = {Drame, Ibrahima and Pardoux, Etienne and Sow, A.B.},
     title = {Non-binary branching process and {non-Markovian} exploration process},
     journal = {ESAIM: Probability and Statistics},
     pages = {1--33},
     publisher = {EDP-Sciences},
     volume = {21},
     year = {2017},
     doi = {10.1051/ps/2016027},
     mrnumber = {3630601},
     zbl = {1371.60148},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2016027/}
}
TY  - JOUR
AU  - Drame, Ibrahima
AU  - Pardoux, Etienne
AU  - Sow, A.B.
TI  - Non-binary branching process and non-Markovian exploration process
JO  - ESAIM: Probability and Statistics
PY  - 2017
SP  - 1
EP  - 33
VL  - 21
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2016027/
DO  - 10.1051/ps/2016027
LA  - en
ID  - PS_2017__21__1_0
ER  - 
%0 Journal Article
%A Drame, Ibrahima
%A Pardoux, Etienne
%A Sow, A.B.
%T Non-binary branching process and non-Markovian exploration process
%J ESAIM: Probability and Statistics
%D 2017
%P 1-33
%V 21
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2016027/
%R 10.1051/ps/2016027
%G en
%F PS_2017__21__1_0
Drame, Ibrahima; Pardoux, Etienne; Sow, A.B. Non-binary branching process and non-Markovian exploration process. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 1-33. doi : 10.1051/ps/2016027. http://www.numdam.org/articles/10.1051/ps/2016027/

D. Aldous, The continuum random tree. I. Ann. Probab. 19 (1991) 1–28. | DOI | MR | Zbl

M. Ba, E. Pardoux and A.B. Sow, Binary trees, exploration processes, and an extended ray-knight theorem. J. Appl. Probab. 49 (2012) 210–225. | DOI | MR | Zbl

P. Billingsley, Probability and Measure, 3nd edition. John Wiley, New York (1995). | MR | Zbl

P. Billingsley, Convergence of Probability Measures, 2nd edition. John Wiley, New York (1999). | MR

E.Çınlar, Probability and Stochastics. Graduate Texts in Mathematics. Vol. 261. Springer (2011). | MR | Zbl

J.-F. Delmas, Height process for super-critical continuous state branching process. Markov Process. Relat. Fields 14 (2008) 309–326. | MR | Zbl

A. Grimvall, On the convergence of sequences of branching processes. Ann. Probab. 2 (1974) 1027–1045. | DOI | MR | Zbl

A. Joffe and M. Métivier, Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. Appl. Probab. 18 (1986) 20–65. | DOI | MR | Zbl

J.-F. Le Gall and Y. Le Jan, Branching processes in Lévy processes: The exploration process. Ann. probab. 26 (1998) 213–252. | MR | Zbl

V. Le, E. Pardoux and A. Wakolbinger, Trees under attack: a Ray–Knight representation of Feller’s branching diffusion with logistic growth. Probab. Theory Relat. Fields 155 (2013) 583–619. | DOI | MR | Zbl

S. Méléard and D. Villemonais, Quasi-stationnary distributions and population processes. Probab. Surv. 9 (2012) 340−410. | DOI | MR | Zbl

E. Pardoux, Probabilistic models of population evolution scaling limits and interactions. Springer (2015). | MR

P.-L. Lions and A.-S. Sznitman, Stochastic differential equations with reflecting boundary conditions. Commun. Pure Appl. Math. 37 (1984) 511–537. | DOI | MR | Zbl

P.E. Protter, Stochastic Integration and Differential Equations: Version 2.1. Vol. 21. Springer (2004). | MR | Zbl

D.W. Stroock and S.S. Varadhan, Diffusion processes with boundary conditions. Commun. Pure Appl. Math. 24 (1971) 147–225. | DOI | MR | Zbl

Cité par Sources :