Analysis of a splitting scheme for a class of random nonlinear partial differential equations
ESAIM: Probability and Statistics, Tome 20 (2016), pp. 572-589.

In this paper, we consider a Lie splitting scheme for a nonlinear partial differential equation driven by a random time-dependent dispersion coefficient. Our main result is a uniform estimate of the error of the scheme when the time step goes to 0. Moreover, we prove that the scheme satisfies an asymptotic-preserving property. As an application, we study the order of convergence of the scheme when the dispersion coefficient approximates a (multi)fractional process.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2016023
Classification : 35Q55, 65M15, 60H15, 60F17
Mots-clés : Nonlinear partial differential equations, splitting, stochastic partial differential equations, asymptotic-Preserving schemes, fractional and multifractional processes
Duboscq, Romain 1 ; Marty, Renaud 2

1 Institut Mathématique de Toulouse, 118 route de Narbonne, 31062 Toulouse, cedex, France.
2 Universitéde Lorraine, CNRS, Institut Elie Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy, 54506, France.
@article{PS_2016__20__572_0,
     author = {Duboscq, Romain and Marty, Renaud},
     title = {Analysis of a splitting scheme for a class of random nonlinear partial differential equations},
     journal = {ESAIM: Probability and Statistics},
     pages = {572--589},
     publisher = {EDP-Sciences},
     volume = {20},
     year = {2016},
     doi = {10.1051/ps/2016023},
     mrnumber = {3607207},
     zbl = {1358.35168},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2016023/}
}
TY  - JOUR
AU  - Duboscq, Romain
AU  - Marty, Renaud
TI  - Analysis of a splitting scheme for a class of random nonlinear partial differential equations
JO  - ESAIM: Probability and Statistics
PY  - 2016
SP  - 572
EP  - 589
VL  - 20
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2016023/
DO  - 10.1051/ps/2016023
LA  - en
ID  - PS_2016__20__572_0
ER  - 
%0 Journal Article
%A Duboscq, Romain
%A Marty, Renaud
%T Analysis of a splitting scheme for a class of random nonlinear partial differential equations
%J ESAIM: Probability and Statistics
%D 2016
%P 572-589
%V 20
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2016023/
%R 10.1051/ps/2016023
%G en
%F PS_2016__20__572_0
Duboscq, Romain; Marty, Renaud. Analysis of a splitting scheme for a class of random nonlinear partial differential equations. ESAIM: Probability and Statistics, Tome 20 (2016), pp. 572-589. doi : 10.1051/ps/2016023. http://www.numdam.org/articles/10.1051/ps/2016023/

G.P. Agrawal, Nonlinear Fiber Optics, 3rd edition. Academic Press, San Diego (2001). | Zbl

G. Bal and L. Ryzhik, Time splitting for wave equations in random media. ESAIM: M2AN 38 (2004) 961–988 | DOI | Numdam | MR | Zbl

G. Bal and L. Ryzhik, Time splitting for the Liouville equation in a random medium. Commun. Math. Sci. 2 (2004) 515–534. | DOI | MR | Zbl

W. Bao, S. Jin and P.A. Markowich, On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175 (2002) 487–524. | DOI | MR | Zbl

A. Benassi, S. Jaffard and D. Roux, Gaussian processes and Pseudodifferential Elliptic operators. Rev. Math. Iberoam. 13 (1997) 19–89. | MR | Zbl

C. Besse, B. Bidégaray and S. Descombes, Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40 (2002) 26–40. | DOI | MR | Zbl

C. Besse, R. Carles and F. Mehats, An asymptotic preserving scheme based on a new formulation for NLS in the semiclassical limit. Multiscale Model. Simul. 11 (2013) 1228–1260. | DOI | MR | Zbl

P. Billingsley, Convergence of Probability Measures. Wiley (1968). | MR | Zbl

S. Cohen and R. Marty, Invariance principle, multifractional Gaussian processes and long-range dependence. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008) 475–489. | DOI | Numdam | MR | Zbl

F. Coron and B. Perthame, Numerical passage from kinetic to fluid equations. SIAM J. Numer. Anal. 28 (1991) 26–42. | DOI | MR | Zbl

A. De Bouard and A. Debussche, The nonlinear Schrodinger equation with white noise dispersion. J. Functional Anal. 259 (2010) 1300–1321. | DOI | MR | Zbl

A. Debussche and Y. Tsutsumi, 1D quintic nonlinear equation with white noise dispersion. J. Math. Pures Appl. 96 (2011) 363–376. | DOI | MR | Zbl

P. Degond, Asymptotic-Preserving Schemes for Fluid Models of Plasmas. Panoramas et Synthèses 39-40 (2013) 1–90. | MR | Zbl

R.L. Dobrushin. Gaussian and their Subordinated Self-Similar Random Generalized Fields. Ann. Probab. 7 (1979) 1–28. | DOI | MR | Zbl

R.L. Dobrushin and P. Major, Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 (1979) 27–52. | DOI | MR | Zbl

P. Donnat, Quelques contributions mathématiques à l’optique non-linéaire. Ph.D. thesis, École Polytechnique (1993).

S.N. Ethier and T.G. Kurtz, Markov processes, characterization and convergence. Wiley, New York (1986). | MR | Zbl

J.-P. Fouque, J. Garnier, G. Papanicolaou and K. Solna, Wave Propagation and Time Reversal in Randomly Layered Media. Springer (2007). | Zbl

E. Gabetta, L. Pareschi and G. Toscani, Relaxation schemes for nonlinear kinetic equations SIAM J. Numer. Anal. 34 (1997) 2168–2194. | DOI | MR | Zbl

J. Garnier and K. Solna, Pulse propagation in random media with long range correlation. Multiscale Model. Simul. 7 (2009) 1302–1324. | DOI | MR | Zbl

C. Gomez and O. Pinaud. Asymptotics of a time-splitting scheme for the random Schrödinger equation with long-range correlations. Math. Model. Numer. Anal. 48 (2014) 411–431. | DOI | Numdam | MR | Zbl

K. Itô. Multiple Wiener integral. J. Math. Soc. Jpn 3 (1951) 157–169 | MR | Zbl

S. Jin, Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations. SIAM J. Sci. Comput. 21 (1999) 441–454. | DOI | MR | Zbl

S. Jin, P. Markowich and C. Sparber, Mathematical and computational methods for semiclassical Schrödinger equations. Acta Numer. 20 (2011) 121–209. | DOI | MR | Zbl

A. Klar, An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35 (1998) 1073–1094. | DOI | MR | Zbl

R. Marty, Asymptotic behavior of differential equations driven by periodic and random processes with slowly decaying correlations. ESAIM: PS 9 (2005) 165–184. | DOI | Numdam | MR | Zbl

R. Marty, On a splitting scheme for the nonlinear Schrödinger equation in a random medium. Commun. Math. Sci. 4 (2006) 679–705. | DOI | MR | Zbl

R. Marty, From Hermite polynomials to multifractional processes. J. Appl. Prob. 50 (2013) 323–343. | DOI | MR | Zbl

R. Marty and K. Solna, A general framework for waves in random media with long-range correlations. Ann. Appl. Probab. 21 (2011) 115–139. | DOI | MR | Zbl

R.F. Peltier and J. Lévy Véhel, Multifractional Brownian motion: definition and preliminary results. preprint available at http://hal.inria.fr/inria-00074045/ (1995).

G. Samorodnitsky and M.S. Taqqu, Stable non-Gaussian random processes. Chapman and Hall (1994). | MR | Zbl

G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5 (1968) 506–517. | DOI | MR | Zbl

M.S. Taqqu. Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete. 31 (1975) 287–302. | DOI | MR | Zbl

M.S. Taqqu. Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50 (1979) 53–83. | DOI | MR | Zbl

Cité par Sources :