Extremes and limit theorems for difference of chi-type processes
ESAIM: Probability and Statistics, Tome 20 (2016), pp. 349-366.

Let { ζ m , k ( κ ) ( t ) , t 0 } , κ > 0 be random processes defined as the differences of two independent stationary chi-type processes with m and k degrees of freedom. In this paper we derive the asymptotics of { sup t [ 0 , T ] ζ m , k ( κ ) ( t ) > u } , u under some assumptions on the covariance structures of the underlying Gaussian processes. Further, we establish a Berman sojourn limit theorem and a Gumbel limit result.

DOI : 10.1051/ps/2016018
Classification : 60G15, 60G70
Mots-clés : Stationary Gaussian process, stationary chi-type process, extremes, Berman sojourn limit theorem, Gumbel limit theorem, Berman’s condition
Albin, Patrik 1 ; Hashorva, Enkelejd 2 ; Ji, Lanpeng 2, 3 ; Ling, Chengxiu 2, 4

1 Department of Mathematical Sciences, Chalmers University of Technology, SE-412, 96 Gothenburg, Sweden.
2 Department of Actuarial Science, University of Lausanne, UNIL-Dorigny 1015 Lausanne, Switzerland.
3 Institute for Information and Communication Technologies, HEIG-VD, University of Applied Sciences of Western Switzerland, Route de Cheseaux 1, 1401 Yverdon-les-Bains, Switzerland.
4 School of Mathematics and Statistics, Southwest University, Beibei District 400715 Chongqing, China.
@article{PS_2016__20__349_0,
     author = {Albin, Patrik and Hashorva, Enkelejd and Ji, Lanpeng and Ling, Chengxiu},
     title = {Extremes and limit theorems for difference of chi-type processes},
     journal = {ESAIM: Probability and Statistics},
     pages = {349--366},
     publisher = {EDP-Sciences},
     volume = {20},
     year = {2016},
     doi = {10.1051/ps/2016018},
     zbl = {1356.60042},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2016018/}
}
TY  - JOUR
AU  - Albin, Patrik
AU  - Hashorva, Enkelejd
AU  - Ji, Lanpeng
AU  - Ling, Chengxiu
TI  - Extremes and limit theorems for difference of chi-type processes
JO  - ESAIM: Probability and Statistics
PY  - 2016
SP  - 349
EP  - 366
VL  - 20
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2016018/
DO  - 10.1051/ps/2016018
LA  - en
ID  - PS_2016__20__349_0
ER  - 
%0 Journal Article
%A Albin, Patrik
%A Hashorva, Enkelejd
%A Ji, Lanpeng
%A Ling, Chengxiu
%T Extremes and limit theorems for difference of chi-type processes
%J ESAIM: Probability and Statistics
%D 2016
%P 349-366
%V 20
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2016018/
%R 10.1051/ps/2016018
%G en
%F PS_2016__20__349_0
Albin, Patrik; Hashorva, Enkelejd; Ji, Lanpeng; Ling, Chengxiu. Extremes and limit theorems for difference of chi-type processes. ESAIM: Probability and Statistics, Tome 20 (2016), pp. 349-366. doi : 10.1051/ps/2016018. http://www.numdam.org/articles/10.1051/ps/2016018/

J.M.P. Albin, On extremal theory for non differentiable stationary processes. Ph.D. thesis, University of Lund, Sweden (1987).

J.M.P. Albin, On extremal theory for stationary processes. Ann. Probab. 18 (1990) 92–128. | Zbl

J.M.P. Albin and D. Jarušková, On a test statistic for linear trend. Extremes 6 (2003) 247–258. | DOI | Zbl

A. Aue, L. Horváth and M. Hušková, Extreme value theory for stochastic integrals of Legendre polynomials. J. Multivariate Anal. 100 (2009) 1029–1043. | DOI | Zbl

S.M. Berman, Sojourns and extremes of stationary processes. Ann. Probab. 10 (1982) 1–46. | DOI | Zbl

S.M. Berman, Sojourns and extremes of stochastic processes. The Wadsworth and Brooks/Cole Statistics/Probability Series. Wadsworth and Brooks/Cole Advanced Books and Software, Pacific Grove, CA (1992). | Zbl

K. Dȩbicki, E. Hashorva and L. Ji, Gaussian approximation of perturbed chi-square risks. Stat. Interface 7 (2014) 363–373. | DOI | Zbl

A.B. Dieker and B. Yakir, On asymptotic constants in the theory of Gaussian processes. Bernoulli 20 (2014) 1600–1619. | DOI | Zbl

P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling extremal events for insurance and finance. Springer-Verlag, Berlin (1997). | Zbl

E. Hashorva and L. Ji, Piterbarg theorems for chi-processes with trend. Extremes 18 (2015) 37–64. | DOI | Zbl

E. Hashorva, D. Korshunov and V.I. Piterbarg, Asymptotic expansion of Gaussian chaos via probabilistic approach. Extremes 18 (2015) 315–347. | DOI | Zbl

J. Hüsler, V.I. Piterbarg and O. Seleznjev, On convergence of the uniform norms for Gaussian processes and linear approximation problems. Ann. Appl. Probab. 13 (2003) 1615–1653. | DOI | Zbl

D. Jarušková, Detecting non-simultaneous changes in means of vectors. TEST 24 (2015) 681–700. | DOI | Zbl

C. Klüppelberg and M.G. Rasmussen, Outcrossings of safe regions by generalized hyperbolic processes. Stat. Probab. Lett. 83 (2013) 2197–2204. | DOI | Zbl

M.R. Leadbetter, G. Lindgren and H. Rootzén, Vol. 11 of Extremes and related properties of random sequences and processes. Springer Verlag (1983). | Zbl

M.R. Leadbetter and H. Rootzén, Extreme value theory for continuous parameter stationary processes. Z. Wahrsch. Verw. Gebiete 60 (1982) 1–20. | DOI | Zbl

G. Lindgren, Extreme values and crossings for the χ 2 -process and other functions of multidimensional Gaussian processes, with reliability applications. Adv. Appl. Probab. 12 (1980) 746–774. | Zbl

G. Lindgren, Extremal ranks and transformation of variables for extremes of functions of multivariate Gaussian processes. Stochastic Process. Appl. 17 (1984) 285–312. | DOI | Zbl

G. Lindgren, Slepian models for χ 2 -processes with dependent components with application to envelope upcrossings. J. Appl. Probab. 26 (1989) 36–49. | Zbl

C. Ling and Z. Tan, On maxima of chi-processes over threshold dependent grids. Statistics 50 (2016) 579–595. | DOI | Zbl

C. Ling and Z. Peng, Extremes of order statistics of self-similar processes (in Chinese). Sci. Sin. Math. 46 (2016) 1–10. DOI: 10.1360/012016-15.

V.I. Piterbarg, Asymptotic methods in the theory of Gaussian processes and fields, Vol. 148. American Mathematical Society, Providence, RI (1996). | Zbl

V.I. Piterbarg and A. Zhdanov, On probability of high extremes for product of two independent Gaussian stationary processes. Extremes 18 (2015) 99–108. | DOI | Zbl

O. Seleznjev, Asymptotic behavior of mean uniform norms for sequences of Gaussian processes and fields. Extremes 8 (2006) 161–169 (2005). | DOI | Zbl

Z. Tan and E. Hashorva, Exact asymptotics and limit theorems for supremum of stationary χ-processes over a random interval. Stochastic Process. Appl. 123 (2013) 1983–2998. | Zbl

Z. Tan and E. Hashorva, Limit theorems for extremes of strongly dependent cyclo-stationary χ-processes. Extremes 16 (2013) 241–254. | DOI | Zbl

Cité par Sources :