Given a random sample of points from some unknown distribution, we propose a new data-driven method for estimating its probability support . Under the mild assumption that is -convex, the smallest -convex set which contains the sample points is the natural estimator. The main problem for using this estimator in practice is that is an unknown geometric characteristic of the set . A stochastic algorithm is proposed for selecting its optimal value from the data under the hypothesis that the sample is uniformly generated. The new data-driven reconstruction of is able to achieve the same convergence rates as the convex hull for estimating convex sets, but under a much more flexible smoothness shape condition.
Accepté le :
DOI : 10.1051/ps/2016015
Mots-clés : Support estimation, r-convexity, uniformity, maximal spacing
@article{PS_2016__20__332_0, author = {Rodr{\'\i}guez-Casal, A. and Saavedra-Nieves, P.}, title = {A fully data-driven method for estimating the shape of a point cloud}, journal = {ESAIM: Probability and Statistics}, pages = {332--348}, publisher = {EDP-Sciences}, volume = {20}, year = {2016}, doi = {10.1051/ps/2016015}, zbl = {1357.62228}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2016015/} }
TY - JOUR AU - Rodríguez-Casal, A. AU - Saavedra-Nieves, P. TI - A fully data-driven method for estimating the shape of a point cloud JO - ESAIM: Probability and Statistics PY - 2016 SP - 332 EP - 348 VL - 20 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2016015/ DO - 10.1051/ps/2016015 LA - en ID - PS_2016__20__332_0 ER -
%0 Journal Article %A Rodríguez-Casal, A. %A Saavedra-Nieves, P. %T A fully data-driven method for estimating the shape of a point cloud %J ESAIM: Probability and Statistics %D 2016 %P 332-348 %V 20 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2016015/ %R 10.1051/ps/2016015 %G en %F PS_2016__20__332_0
Rodríguez-Casal, A.; Saavedra-Nieves, P. A fully data-driven method for estimating the shape of a point cloud. ESAIM: Probability and Statistics, Tome 20 (2016), pp. 332-348. doi : 10.1051/ps/2016015. http://www.numdam.org/articles/10.1051/ps/2016015/
C. Aaron, A. Cholaquidis and R. Fraiman, On the maximal multivariate spacing extension and convexity tests. Preprint (2014). | arXiv
E. Arias-Castro and A. Rodríguez-Casal, On estimating the perimeter using the alpha-shape. Preprint (2015). | arXiv
On the estimation of a star-shaped set. Adv. Appl. Probab. 33 (2001) 717–726. | DOI | Zbl
and ,Parametric versus nonparametric tolerance regions in detection problems. Comput. Stat. 21 (2006) 527–536. | DOI | Zbl
and ,Set estimation and nonparametric detection. Can. J. Stat. 28 (2000) 765–782. | DOI | Zbl
, and ,A multivariate uniformity test for the case of unknown support. Stat. Comput. 22 (2012) 259–271. | DOI | Zbl
, and ,Estimation du support et du contour du support d’une loi de probabilité. Ann. Inst. Henri Poincaré, Probab. Stat. 12 (1976) 339–364. | Numdam | Zbl
,On Poincaré cone property. Ann. Stat. 42 (2014) 255–284. | DOI | Zbl
, and ,On pattern analysis in the non-convex case. Kybernetes 19 (1990) 26–33. | DOI
,On statistical properties of sets fulfilling rolling-type conditions. Adv. Appl. Probab. 44 (2012) 311–329. | DOI | Zbl
, and ,On boundary estimation. Adv. Appl. Probab. 36 (2004) 340–354. | DOI | Zbl
and ,Detection of abnormal behavior via nonparametric estimation of the support. SIAM J. Appl. Math. 38 (1980) 480–488. | DOI | Zbl
and ,Rates of convergence for random approximations of convex sets. Adv. Appl. Probab. 28 (1996) 384–393. | DOI | Zbl
and ,H. Edelsbrunner, Alpha shapes – a survey. To apprear in Tessellations in the Sciences. Springer (2016).
The geometry of nonparametric filament estimation. J. Amer. Statist. Assoc. 107 (2012) 788–799. | DOI | Zbl
, , and ,U. Grenander, Abstract Inference. Wiley, New York (1981). | Zbl
Maximal spacings in several dimensions. Ann. Probab. 15 (1987) 274–280. | DOI | Zbl
,A.P. Korostelëv and A.B. Tsybakov, Minimax Theory of Image Reconstruction. Springer (1993). | Zbl
Selection of alpha for alpha-hull in R2. Pattern Recogn. 30 (1997) 1759–1767. | DOI | Zbl
and ,Generalizing the convex hull of a sample: the R package alphahull. J. Stat. Softw. 34 (2010) 1–28. | DOI
and ,Recovering the shape of a point cloud in the plane. TEST 22 (2013) 19–45. | DOI | Zbl
and ,Random polytopes and the efron’stein jackknife inequality. Ann. Probab. 31 (2003) 2136–2166. | DOI | Zbl
,Finding the edge of a poisson forest. J. Appl. Probab. 14 (1977) 483–491. | DOI | Zbl
and ,Set estimation under convexity type assumptions. Ann. Inst. Henri Poincaré, Probab. Stat. 43 (2007) 763–774. | DOI | Numdam | Zbl
,Random approximation of convex sets. J. Microsc. 151 (1988) 211–227. | DOI | Zbl
,R. Schneider, Convex Bodies: the Brunn–Minkowski Theory. Cambridge University Press (1993). | Zbl
J. Serra, Image Analysis and Mathematical Morphology. Academic Press, London (1982). | Zbl
Granulometric smoothing. Ann. Stat. 25 (1997) 2273–2299. | DOI | Zbl
,On a generalization of blaschke’s rolling theorem and the smoothing of surfaces. Math. Methods Appl. Sci. 22 (1999) 301–316. | DOI | Zbl
,Cité par Sources :