Minimal supersolutions of convex BSDEs under constraints
ESAIM: Probability and Statistics, Tome 20 (2016), pp. 178-195.

We study supersolutions of a backward stochastic differential equation, the control processes of which are constrained to be continuous semimartingales of the form dZ=Δdt+ΓdW. The generator may depend on the decomposition (Δ,Γ) and is assumed to be positive, jointly convex and lower semicontinuous, and to satisfy a superquadratic growth condition in Δ and Γ. We prove the existence of a supersolution that is minimal at time zero and derive stability properties of the non-linear operator that maps terminal conditions to the time zero value of this minimal supersolution such as monotone convergence, Fatou’s lemma and L 1 -lower semicontinuity. Furthermore, we provide duality results within the present framework and thereby give conditions for the existence of solutions under constraints.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2016011
Classification : 60H20, 60H30
Mots-clés : Supersolutions of backward stochastic differential equations, gamma constraints, minimality under constraints, duality
Heyne, Gregor 1 ; Kupper, Michael 2 ; Mainberger, Christoph 1 ; Tangpi, Ludovic 3

1 Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany.
2 University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany.
3 University of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, 1090 Vienna .
@article{PS_2016__20__178_0,
     author = {Heyne, Gregor and Kupper, Michael and Mainberger, Christoph and Tangpi, Ludovic},
     title = {Minimal supersolutions of convex {BSDEs} under constraints},
     journal = {ESAIM: Probability and Statistics},
     pages = {178--195},
     publisher = {EDP-Sciences},
     volume = {20},
     year = {2016},
     doi = {10.1051/ps/2016011},
     mrnumber = {3528623},
     zbl = {1356.60090},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2016011/}
}
TY  - JOUR
AU  - Heyne, Gregor
AU  - Kupper, Michael
AU  - Mainberger, Christoph
AU  - Tangpi, Ludovic
TI  - Minimal supersolutions of convex BSDEs under constraints
JO  - ESAIM: Probability and Statistics
PY  - 2016
SP  - 178
EP  - 195
VL  - 20
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2016011/
DO  - 10.1051/ps/2016011
LA  - en
ID  - PS_2016__20__178_0
ER  - 
%0 Journal Article
%A Heyne, Gregor
%A Kupper, Michael
%A Mainberger, Christoph
%A Tangpi, Ludovic
%T Minimal supersolutions of convex BSDEs under constraints
%J ESAIM: Probability and Statistics
%D 2016
%P 178-195
%V 20
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2016011/
%R 10.1051/ps/2016011
%G en
%F PS_2016__20__178_0
Heyne, Gregor; Kupper, Michael; Mainberger, Christoph; Tangpi, Ludovic. Minimal supersolutions of convex BSDEs under constraints. ESAIM: Probability and Statistics, Tome 20 (2016), pp. 178-195. doi : 10.1051/ps/2016011. http://www.numdam.org/articles/10.1051/ps/2016011/

P. Briand and Y. Hu, BSDE with quadratic growth and unbounded terminal value. Probab. Theory Relat. Fields 136 (2006) 604–618. | DOI | MR | Zbl

M. Broadie, J. Cvitanic and H.M. Soner, Optimal Replication of Contingent Claims under Portfolio Constraints. Rev. Financ. Stud. 11 (1998) 59–79. | DOI

P. Cheridito, H.M. Soner and N. Touzi, The multi-dimensional super-replication problem under gamma constraints. Ann. Inst. Henri Poincaré, Analyse Non Linéaire 22 (2005) 633–666. | DOI | Numdam | MR | Zbl

P. Cheridito, H.M. Soner, N. Touzi and N. Victoir, Second Order Backward Stochastic Differential Equations and Fully Non-Linear Parabolic PDEs. Commun. Pure Appl. Math. 60 (2007) 1081–1110. | DOI | MR | Zbl

J. Cvitanic and I. Karatzas, Hedging contingent claims with constrained portfolios. Ann. Appl. Probab. 3 (1993) 652–681. | DOI | MR | Zbl

F. Delbaen, Y. Hu and X. Bao, Backward SDEs with Superquadratic Growth. Probab. Theory Relat. Fields 150 (2011) 145–192. | DOI | MR | Zbl

F. Delbaen and W. Schachermayer, A General Version of the Fundamental Theorem of Asset Pricing. Math. Annalen 300 (1994) 463–520. | DOI | MR | Zbl

F. Delbaen and W. Schachermayer, A Compactness Principle for Bounded Sequences of Martingales with Applications. Proc. of the Seminar of Stochastic Analysis, Random Fields and Applications. Progress in Probability. Birkhäuser (1996) 133–173. | MR | Zbl

S. Drapeau, G. Heyne and M. Kupper, Minimal Supersolutions of Convex BSDEs. Ann. Probab. 41 (2013) 3973–4001. | DOI | MR | Zbl

S. Drapeau, M. Kupper, E.R. Gianin and L. Tangpi, Dual Representation of Minimal Supersolutions of Convex BSDEs. Ann. Inst. Henri Poincaré 52 (2016) 868–887. | DOI | MR | Zbl

N. El Karoui, S. Peng and M. C. Quenez, Backward Stochastic Differential Equations in Finance. Math. Finance 7 (1997) 1–71. | DOI | MR | Zbl

G. Heyne, Essays on Minimal Supersolutions of BSDEs and on Cross Hedging in Incomplete Markets. Ph.D. thesis, Humboldt-Universität zu Berlin (2012).

G. Heyne, M. Kupper and C. Mainberger, Minimal Supersolutions of BSDEs with Lower Semicontinuous Generators. Ann. Inst. Henri Poincaré, Probabilités Statistiques 50 (2014) 524–538. | Numdam | MR | Zbl

E. Jouini and H. Kallal, Arbitrage in securities markets with short-sales constraints. Math. Finance 5 (1995) 197–232. | DOI | MR | Zbl

I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics. Springer (2004). | Zbl

N. Kazamaki, Continuous Exponential Martingales and BMO. Vol. 1579 of Lect. Notes Math.. Springer-Verlag, Berlin (1994). ISBN 3-540-58042-5. | MR | Zbl

M. Kobylanski, Backward Stochastic Differential Equations and Partial Differential Equations with Quadratic Growth. Ann. Probab. 28 (2000) 558–602. | DOI | MR | Zbl

E. Pardoux and S. Peng, Adapted Solution of a Backward Stochastic Differential Equation. System Control Lett. 14 (1990) 55–61. | DOI | MR | Zbl

S. Peng, Monotonic Limit Theorem of BSDE and Nonlinear Decomposition Theorem of Doob–Meyer’s Type. Probab. Theory Relat. Fields 113 (1999) 473–499. | DOI | MR | Zbl

P.E. Protter, Stochastic Integration and Differential Equations, 2nd edition. Springer (2005). | MR

H.M. Soner and N. Touzi, Superreplication under Gamma constraints. SIAM J. Control Optim. 39 (2000) 73–96. | DOI | MR | Zbl

H.M. Soner, N. Touzi and J. Zhang, Dual Formulation of Second Order Target Problems. Ann. Appl. Probab. 23 (2013) 308–347. | DOI | MR | Zbl

Cité par Sources :