This text is devoted to the asymptotic study of some spectral properties of the Gram matrix
Mots-clés : Random matrices, extreme eigenvalue statistics, mixture models, spectral clustering
@article{PS_2016__20__217_0, author = {Benaych-Georges, Florent and Couillet, Romain}, title = {Spectral analysis of the {Gram} matrix of mixture models}, journal = {ESAIM: Probability and Statistics}, pages = {217--237}, publisher = {EDP-Sciences}, volume = {20}, year = {2016}, doi = {10.1051/ps/2016007}, mrnumber = {3528625}, zbl = {1384.60022}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ps/2016007/} }
TY - JOUR AU - Benaych-Georges, Florent AU - Couillet, Romain TI - Spectral analysis of the Gram matrix of mixture models JO - ESAIM: Probability and Statistics PY - 2016 SP - 217 EP - 237 VL - 20 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ps/2016007/ DO - 10.1051/ps/2016007 LA - en ID - PS_2016__20__217_0 ER -
%0 Journal Article %A Benaych-Georges, Florent %A Couillet, Romain %T Spectral analysis of the Gram matrix of mixture models %J ESAIM: Probability and Statistics %D 2016 %P 217-237 %V 20 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ps/2016007/ %R 10.1051/ps/2016007 %G en %F PS_2016__20__217_0
Benaych-Georges, Florent; Couillet, Romain. Spectral analysis of the Gram matrix of mixture models. ESAIM: Probability and Statistics, Tome 20 (2016), pp. 217-237. doi : 10.1051/ps/2016007. https://www.numdam.org/articles/10.1051/ps/2016007/
O. Ajanki, L. Erdös and T. Kruger Quadratic vector equations on complex upper half-plane (2015).
G. Anderson, A. Guionnet and O. Zeitouni, An Introduction to Random Matrices. Vol. 118 of Cambridge Studies Advanced Math. (2009). | MR | Zbl
No eigenvalues outside the support of the limiting spectral distribution of large dimensional sample covariance matrices. Ann. Probab. (1998) 26 316–345. | MR | Zbl
and ,Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33 (2005) 1643–1697. | DOI | MR | Zbl
, and ,The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Adv. Math. (2011) 227 494–521. | DOI | MR | Zbl
and ,The singular values and vectors of low rank perturbations of large rectangular random matrices. J. Multivariate Anal. 111 (2012) 120–135. | DOI | MR | Zbl
and ,Additive/multiplicative free subordination property and limiting eigenvectors of spiked additive deformations of Wigner matrices and spiked sample covariance matrices. J. Theor. Probab. 26 (2013) 595–648. | DOI | MR | Zbl
,The outliers among the singular values of large rectangular random matrices with additive fixed rank deformation. Markov Process. Relat. Fields 20 (2014) 183–228. | MR | Zbl
, , and ,Analysis of the limiting spectral measure of large random matrices of the separable covariance type. Random Matrices: Theory Appl. 3 (2014) 1450016. | DOI | MR | Zbl
and ,Kernel spectral clustering of large dimensional data. Electron. J. Stat. 10 (2016) 1393–1454. | DOI | MR | Zbl
and ,A deterministic equivalent for the analysis of correlated MIMO multiple access channels. IEEE Trans. Inform. Theory 57 (2011) 3493–3514. | DOI | MR | Zbl
, and ,Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Prob. 37 (2009). | DOI | MR | Zbl
, and ,T. Hastie, R. Tibshirani and J. Friedman, The elements of statistical learning. Data mining, inference, and prediction. Springer Series in Statistics, 3nd edition. Springer, New York (2009). | MR | Zbl
R.A. Horn and C.R. Johnson, Matrix Analysis. Cambridge University Press (2013). | MR | Zbl
R.A. Horn and C.R. Johnson, Topics in Matrix Analysis. Cambridge University Press (1991). | MR
G. James, D. Witten, T. Hastie and R. Tibshirani, An introduction to statistical learning. With applications in R. Vol. 103 of Springer Texts in Statistics. Springer, New York (2013). | MR | Zbl
On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29 (2001) 295-327. | DOI | MR | Zbl
,A central limit theorem for the SINR at the LMMSE estimator output for large-dimensional signals. IEEE Trans. Inform. Theory 55 (2009) 5048–5063. | DOI | MR | Zbl
, , and ,Spectral algorithms. Found. Trends Theoret. Comput. Sci. 4 (2009) 157–288. | DOI | MR | Zbl
and ,A concentration inequality and a local law for the sum of two random matrices. Probab. Theory Related Fields 154 (2012) 677–702. | DOI | MR | Zbl
,Almost sure localization of the eigenvalues in a Gaussian information plus noise model. Applications to the spiked models. Electron. J. Probab. 16 (2011) 1934–1959. | DOI | MR | Zbl
and ,A tutorial on spectral clustering. Stat. Comput. 17 (2007) 395–416. | DOI | MR
,Distribution of eigenvalues for some sets of random matrices. Sb. Math. 1 (1967) 457–483. | DOI | Zbl
and ,Analysis of the limiting spectral distribution of large dimensional random matrices. J. Multivariate Anal. 54 (1995) 295–309. | DOI | MR | Zbl
and ,Cité par Sources :