A test for the equality of monotone transformations of two random variables
ESAIM: Probability and Statistics, Tome 20 (2016), pp. 510-526.

It is frequent that observations arise from a random variable modified by an unknown transformation. This problem is considered in a two-sample context when two random variables are perturbed by two unknown transformations. We propose a test for the equality of those transformations. Two cases are considered: first, the two random variables have known distributions. Second, they have unknown distributions but they are observed before transformations. We propose nonparametric test statistics based on empirical cumulative distribution functions. In the first case the asymptotic distribution of the test statistic is the standard normal distribution. In the second case it is shown that the asymptotic distribution is a convolution of exponential distributions. The convergence under contiguous alternatives is studied. Monte Carlo studies are performed to analyze the level and the power of the test. An illustration is presented through a real data set.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2016003
Classification : 62G10, 62G05
Mots-clés : Empirical cumulative distribution, nonlinear transformation, nonparametric estimation
Boutahar, Mohamed 1 ; Pommeret, Denys 1

1 Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France.
@article{PS_2016__20__510_0,
     author = {Boutahar, Mohamed and Pommeret, Denys},
     title = {A test for the equality of monotone transformations of two random variables},
     journal = {ESAIM: Probability and Statistics},
     pages = {510--526},
     publisher = {EDP-Sciences},
     volume = {20},
     year = {2016},
     doi = {10.1051/ps/2016003},
     mrnumber = {3581832},
     zbl = {1357.62191},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2016003/}
}
TY  - JOUR
AU  - Boutahar, Mohamed
AU  - Pommeret, Denys
TI  - A test for the equality of monotone transformations of two random variables
JO  - ESAIM: Probability and Statistics
PY  - 2016
SP  - 510
EP  - 526
VL  - 20
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2016003/
DO  - 10.1051/ps/2016003
LA  - en
ID  - PS_2016__20__510_0
ER  - 
%0 Journal Article
%A Boutahar, Mohamed
%A Pommeret, Denys
%T A test for the equality of monotone transformations of two random variables
%J ESAIM: Probability and Statistics
%D 2016
%P 510-526
%V 20
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2016003/
%R 10.1051/ps/2016003
%G en
%F PS_2016__20__510_0
Boutahar, Mohamed; Pommeret, Denys. A test for the equality of monotone transformations of two random variables. ESAIM: Probability and Statistics, Tome 20 (2016), pp. 510-526. doi : 10.1051/ps/2016003. http://www.numdam.org/articles/10.1051/ps/2016003/

N. Balakrishnan and B. Xingqiu Zhao, New multi-sample nonparametric tests for panel count data. Ann. Stat. 37 (2009) 1112–1149. | DOI | MR | Zbl

N. Balakrishnan and B. Xingqiu Zhao, A nonparametric test for the equality of counting processes with panel count data. Comput. Stat. Data Anal. 54 (2010) 135–142. | DOI | MR | Zbl

M. Boutahar, B. Ghattas and D. Pommeret, Nonparametric comparison of several transformations of distribution functions. J. Nonparametric Stat. 25 (2013) 619–633. | DOI | MR | Zbl

R.J. Carroll, D. Ruppert, L.A. Stefanski and C. Crainiceanu, Measurement Error in Nonlinear Models: A Modern Perspective, 2nd edition. Chapman Hall, New York (2006). | MR

L. Cavalier and N. Hengartner, Adaptive estimation for inverse problems with noisy operators. Inverse Probl. 21 (2005) 1345–1361. | DOI | MR | Zbl

S. Efromovich and V. Koltchinskii, On inverse problems with unknown operators. IEEE Trans. Inf. Theory 47 (2001) 2876–2893. | DOI | MR | Zbl

R. Friden, Probability, Statistical Optics and Data Testing: A Problem Solving Approach. Springer Series in Information Science (2001). | Zbl

L. Jin, A data-driven test to compare two or multiple time series. Comput. Stat. Data Anal. 55 (2011) 2183–2196. | DOI | MR | Zbl

H. Jin and J. Zhang, Subsampling tests for variance changes in the presence of autoregressive parameter shifts. J. Multivariate Anal. 101 (2010) 2255–2265 | DOI | MR | Zbl

J. Meyer, Stochastic Dominance and Transformations of Random Variables, in Studies in the Economics of Uncertainty: In Honor of Josef Hadar, edited by T.B. Fomby and T.K. Seo. Springer Science and Business Media (2012) 45–58.

J. Meyer and M.B. Ormiston, Deterministic transformations of random variables and the comparative statics of risk. J. Risk Uncertain. 2 (1989) 179–188. | DOI

M.H. Neumann and E. Paparoditis, On bootstrapping L2-type statistics in density testing. Stat. Probab. Lett. 50 (2000) 137–147 | DOI | MR | Zbl

P. Sarda and P. Vieu,Kernel regression, in Smoothing and Regression Approaches, computation and application, edited by M.G. Schimek. Wiley Series in Probability and Statistics (2000) 43–70. | Zbl

S.L. Sclove and J.V. Ryzin, Estimating the Parameters of a Linear Function of a Random Variable. J. R. Stat. Soc. Ser. B 32 (1970) 362–368. | MR | Zbl

P.K. Sen, Limiting behavior of regular functionals of empirical distributions for stationary mixing processes. Probab. Theory Relat. Fields 25 (1972) 71–82. | MR | Zbl

J. Sun and J.D. Kalbfleisch, Estimation of the mean function of point processes based on data panel count data. Stat. Sin. 5 (1995) 279–290. | MR | Zbl

X.F. Wang and B. Wang, Deconvolution Estimation in Measurement Error Models: The R Package decon. J. Stat. Softw. 39 (2011) 8060.

Cité par Sources :