Estimation of population parameters in stochastic differential equations with random effects in the diffusion coefficient
ESAIM: Probability and Statistics, Tome 19 (2015), pp. 671-688.

We consider N independent stochastic processes (X i (t),t[0,T]), i=1,...,N, defined by a stochastic differential equation with diffusion coefficients depending linearly on a random variable φ i . The distribution of the random effect φ i depends on unknown population parameters which are to be estimated from a discrete observation of the processes (X i ). The likelihood generally does not have any closed form expression. Two estimation methods are proposed: one based on the Euler approximation of the likelihood and another based on estimations of the random effects. When the distribution of the random effects is Gamma, the asymptotic properties of the estimators are derived when both N and the number of observations per component X i tend to infinity. The estimators are computed on simulated data for several models and show good performances.

Reçu le :
DOI : 10.1051/ps/2015006
Classification : 62F10, 62F12
Mots clés : Approximate maximum likelihood estimator, asymptotic normality, consistency, estimating equations, random effects models, stochastic differential equations
Delattre, Maud 1 ; Genon-Catalot, Valentine 2 ; Samson, Adeline 3

1 AgroParisTech, UMR518, 75005 Paris, France
2 UMR CNRS 8145, Laboratoire MAP5, Université Paris Descartes, Sorbonne Paris Cité, France
3 Laboratoire Jean Kuntzmann, UMR CNRS 5224, Université Grenoble-Alpes, France
@article{PS_2015__19__671_0,
     author = {Delattre, Maud and Genon-Catalot, Valentine and Samson, Adeline},
     title = {Estimation of population parameters in stochastic differential equations with random effects in the diffusion coefficient},
     journal = {ESAIM: Probability and Statistics},
     pages = {671--688},
     publisher = {EDP-Sciences},
     volume = {19},
     year = {2015},
     doi = {10.1051/ps/2015006},
     mrnumber = {3433432},
     zbl = {1392.62249},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2015006/}
}
TY  - JOUR
AU  - Delattre, Maud
AU  - Genon-Catalot, Valentine
AU  - Samson, Adeline
TI  - Estimation of population parameters in stochastic differential equations with random effects in the diffusion coefficient
JO  - ESAIM: Probability and Statistics
PY  - 2015
SP  - 671
EP  - 688
VL  - 19
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2015006/
DO  - 10.1051/ps/2015006
LA  - en
ID  - PS_2015__19__671_0
ER  - 
%0 Journal Article
%A Delattre, Maud
%A Genon-Catalot, Valentine
%A Samson, Adeline
%T Estimation of population parameters in stochastic differential equations with random effects in the diffusion coefficient
%J ESAIM: Probability and Statistics
%D 2015
%P 671-688
%V 19
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2015006/
%R 10.1051/ps/2015006
%G en
%F PS_2015__19__671_0
Delattre, Maud; Genon-Catalot, Valentine; Samson, Adeline. Estimation of population parameters in stochastic differential equations with random effects in the diffusion coefficient. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 671-688. doi : 10.1051/ps/2015006. http://www.numdam.org/articles/10.1051/ps/2015006/

O. Barndorff-Nielsen and M. Sorensen, Information quantities in non-classical settings. Comput. Stat. Data Anal. 12 (1991) 143–158. | MR | Zbl

M. Delattre and M. Lavielle, Coupling the SAEM algorithm and the extended kalman filter for maximum likelihood estimation in mixed-effects diffusion models. Stat. Interface 6 (2013) 519–532. | MR | Zbl

M. Delattre, V. Genon-Catalot and A. Samson, Maximum likelihood estimation for stochastic differential equations with random effects. Scand. J. Stat. 40 (2013) 322–343. | MR | Zbl

S. Donnet and A. Samson, Parametric inference for mixed models defined by stochastic differential equations. ESAIM: PS 12 (2008) 196–218. | Zbl

S. Donnet and A. Samson, A review on estimation of stochastic differential equations for pharmacokinetic - pharmacodynamic models. Adv. Drug Delivery Rev. 65 (2013) 929–939.

V. Genon-Catalot and J. Jacod, On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Ann. Inst. Henri Poincaré, Probab. Statist. 29 (1993) 119–151. | Zbl

V. Genon-Catalot, T. Jeantheau and C. Laredo, Parameter estimation for discretely observed stochastic volatility models. Bernoulli 5 (1999) 855–872. | Zbl

M. Kessler, A. Lindner and M. Sorensen, Statistical Methods for Stochastic Differential Equations. Edited by M. Kessler, A. Lindner and M. Sorensen. CRC Press (2012).

L. Nie, Strong consistency of the maximum likelihood estimator in generalized linear and nonlinear mixed-effects models. Metrika 63 (2006) 123–143. | Zbl

U. Picchini, A. De Gaetano and S. Ditlevsen, Stochastic differential mixed-effects models. Scand. J. Stat. 37 (2010) 67–90. | Zbl

U. Picchini and S. Ditlevsen, Practicle estimation of high dimensional stochastic differential mixed-effects models. Comput. Stat. Data Anal. 55 (2011) 1426–1444. | Zbl

T. Sweeting, Uniform asymptotic normality of the maximum likelihood estimator. Ann. Stat. 8 (1980) 1179–1403. | Zbl

Cité par Sources :