Asymptotic equivalence for inhomogeneous jump diffusion processes and white noise
ESAIM: Probability and Statistics, Tome 19 (2015), pp. 560-577.

We prove the global asymptotic equivalence between the experiments generated by the discrete (high frequency) or continuous observation of a path of a time inhomogeneous jump-diffusion process and a Gaussian white noise experiment. Here, the parameter of interest is the drift function and the observation time T can be both bounded or diverging. The approximation is given in the sense of the Le Cam Δ-distance, under some smoothness conditions on the unknown drift function. These asymptotic equivalences are established by constructing explicit Markov kernels that can be used to reproduce one experiment from the other.

Reçu le :
DOI : 10.1051/ps/2015005
Classification : 62B15, 62G20, 60G51, 62C20
Mots clés : Non-parametric experiments, Le Cam distance, asymptotic equivalence, Lévy processes, additive processes, white noise
Mariucci, Ester 1

1 Laboratoire Jean Kuntzmann, 51 rue des Mathématiques, 38041 Grenoble cedex 09, France.
@article{PS_2015__19__560_0,
     author = {Mariucci, Ester},
     title = {Asymptotic equivalence for inhomogeneous jump diffusion processes and white noise},
     journal = {ESAIM: Probability and Statistics},
     pages = {560--577},
     publisher = {EDP-Sciences},
     volume = {19},
     year = {2015},
     doi = {10.1051/ps/2015005},
     mrnumber = {3433426},
     zbl = {1331.62058},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2015005/}
}
TY  - JOUR
AU  - Mariucci, Ester
TI  - Asymptotic equivalence for inhomogeneous jump diffusion processes and white noise
JO  - ESAIM: Probability and Statistics
PY  - 2015
SP  - 560
EP  - 577
VL  - 19
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2015005/
DO  - 10.1051/ps/2015005
LA  - en
ID  - PS_2015__19__560_0
ER  - 
%0 Journal Article
%A Mariucci, Ester
%T Asymptotic equivalence for inhomogeneous jump diffusion processes and white noise
%J ESAIM: Probability and Statistics
%D 2015
%P 560-577
%V 19
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2015005/
%R 10.1051/ps/2015005
%G en
%F PS_2015__19__560_0
Mariucci, Ester. Asymptotic equivalence for inhomogeneous jump diffusion processes and white noise. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 560-577. doi : 10.1051/ps/2015005. http://www.numdam.org/articles/10.1051/ps/2015005/

L.D. Brown and M.G. Low, Asymptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 (1996) 2384–2398. | MR | Zbl

L.D. Brown and Cun-Hui Zhang, Asymptotic nonequivalence of nonparametric experiments when the smoothness index is 1/2. Ann. Statist. 26 (1998) 279–287. | MR | Zbl

L.D. Brown, T. Tony Cai, M.G. Low and Cun-Hui Zhang, Asymptotic equivalence theory for nonparametric regression with random design. Dedicated to the memory of Lucien Le Cam. Ann. Statist. 30 (2002) 688–707. | MR | Zbl

L.D. Brown, A.V. Carter, M.G. Low and Cun-Hui Zhang, Equivalence theory for density estimation, Poisson processes and Gaussian white noise with drift. Ann. Statist. 32 (2004) 2074–2097. | MR | Zbl

B. Buchmann and G. Müller, Limit experiments of GARCH. Bernoulli 18 (2012) 64–99. | MR | Zbl

A.V. Carter, Deficiency distance between multinomial and multivariate normal experiments. Dedicated to the memory of Lucien Le Cam. Ann. Statist. 30 (2002) 708–730. | MR | Zbl

A.V. Carter, A continuous Gaussian approximation to a nonparametric regression in two dimensions. Bernoulli 12 (2006) 143–156. | MR | Zbl

A.V. Carter, Asymptotic approximation of nonparametric regression experiments with unknown variances. Ann. Statist. 35 (2007) 1644–1673. | MR | Zbl

A.V. Carter, Asymptotically sufficient statistics in nonparametric regression experiments with correlated noise. J. Probab. Stat. 19 (2009) 275308. | MR | Zbl

R. Cont and P. Tankov, Financial modelling with jump processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL (2004). | MR | Zbl

A. Dalalyan and M. Reiß, Asymptotic statistical equivalence for scalar ergodic diffusions. Probab. Theory Relat. Fields 134 (2006) 248–282. | MR | Zbl

A. Dalalyan and M. Reiß, Asymptotic statistical equivalence for ergodic diffusions: the multidimensional case. Probab. Theory Relat. Fields 137 (2007) 25–47. | MR | Zbl

S. Delattre and M. Hoffmann, Asymptotic equivalence for a null recurrent diffusion. Bernoulli 8 (2002) 139–174. | MR | Zbl

C. Duval et al. Statistical inference across time scales. Electron. J. Stat. 5 (2011) 2004–2030. | MR | Zbl

S. Efromovich and A. Samarov, Asymptotic equivalence of nonparametric regression and white noise model has its limits. Stat. Probab. Lett. 28 (1996) 143–145. | MR | Zbl

P. Etoré, S. Louhichi and E. Mariucci, Asymptotic equivalence of jumps lévy processes and their discrete counterpart. Preprint arXiv:1305.6725 (2013).

V. Genon-Catalot and C. Laredo, Asymptotic equivalence of nonparametric diffusion and Euler scheme experiments. Ann. Stat. 42 (2014) 1145–1165. | MR | Zbl

V. Genon-Catalot, C. Laredo and M. Nussbaum, Asymptotic equivalence of estimating a Poisson intensity and a positive diffusion drift. Ann. Stat. 30 (2002) 731–753. Dedicated to the memory of Lucien Le Cam. | MR | Zbl

G.K. Golubev, M. Nussbaum and H.H. Zhou, Asymptotic equivalence of spectral density estimation and Gaussian white noise. Ann. Stat. 38 (2010) 181–214. | MR | Zbl

I. Grama and M. Nussbaum, Asymptotic equivalence for nonparametric generalized linear models. Probab. Theory Related Fields 111 (1998) 167–214. | MR | Zbl

I. Grama and M. Nussbaum, Asymptotic equivalence for nonparametric regression. Math. Methods Stat. 11 (2002) 1–36. | MR | Zbl

I.G. Grama and M.H. Neumann, Asymptotic equivalence of nonparametric autoregression and nonparametric regression. Ann. Stat. 34 1701–1732 (2006). | MR | Zbl

M. Jähnisch and M. Nussbaum, Asymptotic equivalence for a model of independent non identically distributed observations. Statist. Decisions 21 (2003) 197–218. | MR | Zbl

L. Le Cam, Théorie asymptotique de la décision statistique. Séminaire de Mathématiques Supérieures, no. 33 (Été, 1968). Les Presses de l’Université de Montréal, Montreal, Québec (1969). | MR | Zbl

Lucien Le Cam, Asymptotic methods in statistical decision theory. Springer Ser. Stat. Springer-Verlag, New York (1986). | MR | Zbl

L. Le Cam and G. Lo Yang, Asymptotics in statistics. Some basic concepts. Springer Ser. Stat. Springer-Verlag, New York, 2nd edn. (2000). | MR

E. Mariucci, Asymptotic equivalence of discretely observed diffusion processes and their euler scheme: small variance case. To appear in Stat. Inference Stoch. Process (2015). DOI:. | DOI | MR

A. Meister, Asymptotic equivalence of functional linear regression and a white noise inverse problem. Ann. Stat. 39 (2011) 1471–1495. | MR | Zbl

A. Meister and M. Reiß, Asymptotic equivalence for nonparametric regression with non-regular errors. Probab. Theory Related Fields 155 (2013) 201–229. | MR | Zbl

G. Milstein and M. Nussbaum, Diffusion approximation for nonparametric autoregression. Probab. Theory Related Fields 112 (1998) 535–543. | MR | Zbl

M. Nussbaum, Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Stat. 24 (1996) 2399–2430. | MR | Zbl

M. Reiß, Asymptotic equivalence for nonparametric regression with multivariate and random design. Ann. Stat. 36 (2008) 1957–1982. | MR | Zbl

M. Reiß, Asymptotic equivalence for inference on the volatility from noisy observations. Ann. Stat. 39 (2011) 772–802. | MR | Zbl

A. Rohde, On the asymptotic equivalence and rate of convergence of nonparametric regression and Gaussian white noise. Statist. Decisions 2 (2004) 235–243. | MR | Zbl

H. Strasser, Mathematical theory of statistics. Statistical experiments and asymptotic decision theory. Vol. 7 of de Gruyter Stud. Math. Walter de Gruyter & Co., Berlin (1985). | MR | Zbl

A.B. Tsybakov, Introduction to nonparametric estimation. Springer Ser. Stat. Springer, New York (2009). Revised and extended from the 2004 French original, Translated by Vladimir Zaiats. | MR

Y. Wang, Asymptotic nonequivalence of Garch models and diffusions. Ann. Stat. 30 (2002) 754–783. Dedicated to the memory of Lucien Le Cam. | MR | Zbl

Cité par Sources :