We consider a class of stochastic processes defined by for , where is a square-integrable continuous martingale and is a deterministic kernel. Let be an odd integer. Under the assumption that the quadratic variation of is differentiable with finite, it is shown that the th power variation
DOI : 10.1051/ps/2014031
Mots-clés : Power variation, martingale, calculusvia regularization, Gaussian processes, generalized Stratonovich integral, non-Gaussian processes
@article{PS_2015__19__414_0, author = {Russo, Francesco and Viens, Frederi}, title = {Gaussian and {non-Gaussian} processes of zero power variation}, journal = {ESAIM: Probability and Statistics}, pages = {414--439}, publisher = {EDP-Sciences}, volume = {19}, year = {2015}, doi = {10.1051/ps/2014031}, zbl = {1333.60114}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2014031/} }
TY - JOUR AU - Russo, Francesco AU - Viens, Frederi TI - Gaussian and non-Gaussian processes of zero power variation JO - ESAIM: Probability and Statistics PY - 2015 SP - 414 EP - 439 VL - 19 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2014031/ DO - 10.1051/ps/2014031 LA - en ID - PS_2015__19__414_0 ER -
%0 Journal Article %A Russo, Francesco %A Viens, Frederi %T Gaussian and non-Gaussian processes of zero power variation %J ESAIM: Probability and Statistics %D 2015 %P 414-439 %V 19 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2014031/ %R 10.1051/ps/2014031 %G en %F PS_2015__19__414_0
Russo, Francesco; Viens, Frederi. Gaussian and non-Gaussian processes of zero power variation. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 414-439. doi : 10.1051/ps/2014031. http://www.numdam.org/articles/10.1051/ps/2014031/
R. Adler, An introduction to continuity, extrema, and related topics for general Gaussian processes. Inst. Math. Stat. Hayward, CA (1990). | Zbl
Stochastic integration with respect to fractional Brownian motion. Stoch. Stoch. Rep. 75 (2003) 129–152. | Zbl
and ,Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29 (1999) 766–801. | Zbl
, and ,Almost sure oscillation of certain random processes. Bernoulli 2 (1996) 257–270. | Zbl
and ,Sur une intégrale pour les processus à -variation bornée. Ann. Probab. 17 (1989) 1521–1535. | Zbl
,F. Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic calculus with respect to fractional Brownian motion and applications. Probab. Appl. Springer-Verlag (2008). | Zbl
On polynomial chaos and integrability. Probab. Math. Statist. 3 (1984) 191–203. | Zbl
,Central limit theorems for non-linear functionals of Gaussian fields. J. Multivariate Anal. 13 (1983) 425–441. | Zbl
and ,M. Bruneau, Variation totale d’une fonction. Vol. 413 of Lect. Notes Math. Springer-Verlag, Berlin-New York (1974). | Zbl
A change of variable formula with Itô correction term. Ann. Probab. 38 (2010) 1817–1869. | Zbl
, and ,Stochastic integration with respect to fractional Brownian motion. Ann. Inst. Henri Poincaré, Probab. Statist. 39 (2003) 27–68. | Zbl
, and ,R.M. Dudley and R. Norvaiša, Differentiability of six operators on nonsmooth functions and -variation.With the collaboration of Jinghua Qian. Vol. 1703 of Lect. Notes Math. Springer-Verlag, Berlin (1999). | Zbl
Covariation de convolution de martingales. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998) 601–606. | Zbl
and ,-covariation,generalized Dirichlet processes and calculus with respect to finite cubic variation processes. Stoch. Process. Appl. 104 (2003) 259–299. | Zbl
and ,Generalized stochastic integration and stochastic ODE’s. Ann. Probab. 30 (2002) 270–292. | Zbl
and ,H. Föllmer, Calcul d’Itô sans probabilités. In Séminaire de Probabilités, XV, Univ. Strasbourg, Strasbourg, 1979/1980 (French). In vol. 850 of Lect. Notes Math. Springer, Berlin (1981) 143–150. | Zbl
P. Friz and N. Victoir, Multidimensional Stochastic Processes as Rough Paths: Theory and Applications. Cambridge Stud. Adv. Math. Cambridge UP (2010). | Zbl
Approximation at first and second order of -order integrals of the fractional Brownian motion and of certain semimartingales. Electron. J. Probab. 8 (2003) 26. | Zbl
and ,Generalized covariations, local time and Stratonovich Itô’s formula for fractional Brownian motion with Hurst index . Ann. Pobab. 31 (2003) 1772–1820. | Zbl
, and ,-order integrals and Itô’s formula for non-semimartingale processes; the case of a fractional Brownian motion with any Hurst index. Ann. Inst. Henri Poincaré, Probab. Stat. 41 (2005) 781–806. | Zbl
, , and ,Fractional martingales and characterization of the fractional Brownian motion. Ann. Probab. 37 (2009) 2404–2430. | Zbl
, and ,I. Kruk and F. Russo, Malliavin-Skorohod calculus and Paley-Wiener integral for covariance singular processes. Preprint HAL-INRIA 00540914.
H.-H. Kuo, Introduction to stochastic integration. Springer (2006). | Zbl
T. Lyons and Z. Qian, System control and rough paths. Oxford Math. Monogr. Oxford University Press, Oxford (2002). | Zbl
Skorohod integration and stochastic calculus beyond the fractional Brownian scale. J. Funct. Anal. 222 (2004) 385–434. | Zbl
and ,A change of variable formula for the 2D fractional Brownian motion of Hurst index bigger or equal to . J. Funct. Anal. 256 (2009) 2304–2320. | Zbl
,Central limit theorems for multiple Skorohod integrals. J. Theoret. Probab. 23 39–64. | Zbl
and ,Central and non-central limit theorems for weighted power variations of fractional Brownian motion. Ann. Inst. Henri Poincaré, Probab. Stat. 46 (2010) 1055–1079. | Zbl
, and ,The weak Stratonovich integral with respect to fractional Brownian motion with Hurst parameter 1/6. Electron. J. Probab. 15 (2010) 2117–2162. | Zbl
, and ,D. Nualart, The Malliavin calculus and related topics, 2nd edition. Probab. Appl. Springer-Verlag (2006). | Zbl
Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stochastic Process. Appl. 118 (2008) 614–628. | Zbl
and ,The exact -variation of a process arising from Brownian motion. Stoch. Stoch. Rep. 51 (1994) 267–291. | Zbl
and ,On the bifractional Brownian motion. Stoch. Process. Appl. 116 (2006) 830–856. | Zbl
and ,The generalized covariation process and Itô formula. Stoch. Process. Appl. 59 (1995) 81–104. | Zbl
and ,Stochastic calculus with respect to a finite quadratic variation process. Stoch. Stoch. Rep. 70 (2000) 1–40. | Zbl
and ,F. Russo and P. Vallois, Elements of stochastic calculus via regularizations. Séminaire de Probabilités XL. Vol. 1899 of Lect. Notes Math. Springer, Berlin Heidelberg, New-York (2007) 147–186. | Zbl
F. Russo and F. Viens, Gaussian and non-Gaussian processes of zero power variation, and related stochastic calculus. Preprint arXiv:1407.4568 (2014).
Sharp Gaussian regularity on the circle and application to the fractional stochastic heat equation. J. Funct. Anal. 217 (2004) 280–313. | Zbl
, and ,Supremum Concentration Inequality and Modulus of Continuity for Sub-th Chaos Processes. J. Funct. Anal. 248 (2007) 1–26. | Zbl
and ,Cité par Sources :