We consider a class of stochastic processes
DOI : 10.1051/ps/2014031
Mots-clés : Power variation, martingale, calculusvia regularization, Gaussian processes, generalized Stratonovich integral, non-Gaussian processes
@article{PS_2015__19__414_0, author = {Russo, Francesco and Viens, Frederi}, title = {Gaussian and {non-Gaussian} processes of zero power variation}, journal = {ESAIM: Probability and Statistics}, pages = {414--439}, publisher = {EDP-Sciences}, volume = {19}, year = {2015}, doi = {10.1051/ps/2014031}, zbl = {1333.60114}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ps/2014031/} }
TY - JOUR AU - Russo, Francesco AU - Viens, Frederi TI - Gaussian and non-Gaussian processes of zero power variation JO - ESAIM: Probability and Statistics PY - 2015 SP - 414 EP - 439 VL - 19 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ps/2014031/ DO - 10.1051/ps/2014031 LA - en ID - PS_2015__19__414_0 ER -
%0 Journal Article %A Russo, Francesco %A Viens, Frederi %T Gaussian and non-Gaussian processes of zero power variation %J ESAIM: Probability and Statistics %D 2015 %P 414-439 %V 19 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ps/2014031/ %R 10.1051/ps/2014031 %G en %F PS_2015__19__414_0
Russo, Francesco; Viens, Frederi. Gaussian and non-Gaussian processes of zero power variation. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 414-439. doi : 10.1051/ps/2014031. https://www.numdam.org/articles/10.1051/ps/2014031/
R. Adler, An introduction to continuity, extrema, and related topics for general Gaussian processes. Inst. Math. Stat. Hayward, CA (1990). | Zbl
Stochastic integration with respect to fractional Brownian motion. Stoch. Stoch. Rep. 75 (2003) 129–152. | Zbl
and ,Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29 (1999) 766–801. | Zbl
, and ,Almost sure oscillation of certain random processes. Bernoulli 2 (1996) 257–270. | Zbl
and ,
Sur une intégrale pour les processus à
F. Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic calculus with respect to fractional Brownian motion and applications. Probab. Appl. Springer-Verlag (2008). | Zbl
On polynomial chaos and integrability. Probab. Math. Statist. 3 (1984) 191–203. | Zbl
,Central limit theorems for non-linear functionals of Gaussian fields. J. Multivariate Anal. 13 (1983) 425–441. | Zbl
and ,M. Bruneau, Variation totale d’une fonction. Vol. 413 of Lect. Notes Math. Springer-Verlag, Berlin-New York (1974). | Zbl
A change of variable formula with Itô correction term. Ann. Probab. 38 (2010) 1817–1869. | Zbl
, and ,Stochastic integration with respect to fractional Brownian motion. Ann. Inst. Henri Poincaré, Probab. Statist. 39 (2003) 27–68. | Zbl
, and ,
R.M. Dudley and R. Norvaiša, Differentiability of six operators on nonsmooth functions and
Covariation de convolution de martingales. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998) 601–606. | Zbl
and ,
Generalized stochastic integration and stochastic ODE’s. Ann. Probab. 30 (2002) 270–292. | Zbl
and ,H. Föllmer, Calcul d’Itô sans probabilités. In Séminaire de Probabilités, XV, Univ. Strasbourg, Strasbourg, 1979/1980 (French). In vol. 850 of Lect. Notes Math. Springer, Berlin (1981) 143–150. | Zbl
P. Friz and N. Victoir, Multidimensional Stochastic Processes as Rough Paths: Theory and Applications. Cambridge Stud. Adv. Math. Cambridge UP (2010). | Zbl
Approximation at first and second order of
Generalized covariations, local time and Stratonovich Itô’s formula for fractional Brownian motion with Hurst index
Fractional martingales and characterization of the fractional Brownian motion. Ann. Probab. 37 (2009) 2404–2430. | Zbl
, and ,I. Kruk and F. Russo, Malliavin-Skorohod calculus and Paley-Wiener integral for covariance singular processes. Preprint HAL-INRIA 00540914.
H.-H. Kuo, Introduction to stochastic integration. Springer (2006). | Zbl
T. Lyons and Z. Qian, System control and rough paths. Oxford Math. Monogr. Oxford University Press, Oxford (2002). | Zbl
Skorohod integration and stochastic calculus beyond the fractional Brownian scale. J. Funct. Anal. 222 (2004) 385–434. | Zbl
and ,
A change of variable formula for the 2D fractional Brownian motion of Hurst index bigger or equal to
Central limit theorems for multiple Skorohod integrals. J. Theoret. Probab. 23 39–64. | Zbl
and ,Central and non-central limit theorems for weighted power variations of fractional Brownian motion. Ann. Inst. Henri Poincaré, Probab. Stat. 46 (2010) 1055–1079. | Zbl
, and ,The weak Stratonovich integral with respect to fractional Brownian motion with Hurst parameter 1/6. Electron. J. Probab. 15 (2010) 2117–2162. | Zbl
, and ,D. Nualart, The Malliavin calculus and related topics, 2nd edition. Probab. Appl. Springer-Verlag (2006). | Zbl
Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stochastic Process. Appl. 118 (2008) 614–628. | Zbl
and ,
The exact
On the bifractional Brownian motion. Stoch. Process. Appl. 116 (2006) 830–856. | Zbl
and ,The generalized covariation process and Itô formula. Stoch. Process. Appl. 59 (1995) 81–104. | Zbl
and ,Stochastic calculus with respect to a finite quadratic variation process. Stoch. Stoch. Rep. 70 (2000) 1–40. | Zbl
and ,F. Russo and P. Vallois, Elements of stochastic calculus via regularizations. Séminaire de Probabilités XL. Vol. 1899 of Lect. Notes Math. Springer, Berlin Heidelberg, New-York (2007) 147–186. | Zbl
F. Russo and F. Viens, Gaussian and non-Gaussian processes of zero power variation, and related stochastic calculus. Preprint arXiv:1407.4568 (2014).
Sharp Gaussian regularity on the circle and application to the fractional stochastic heat equation. J. Funct. Anal. 217 (2004) 280–313. | Zbl
, and ,
Supremum Concentration Inequality and Modulus of Continuity for Sub-
- Stochastic Calculus with n-Covariations, Stochastic Calculus via Regularizations, Volume 11 (2022), p. 557 | DOI:10.1007/978-3-031-09446-0_16
- Gaussian and non-Gaussian processes of zero power variation, ESAIM: Probability and Statistics, Volume 19 (2015), p. 414 | DOI:10.1051/ps/2014031
Cité par 2 documents. Sources : Crossref