Gaussian and non-Gaussian processes of zero power variation
ESAIM: Probability and Statistics, Tome 19 (2015), pp. 414-439.

We consider a class of stochastic processes X defined by X(t)= 0 T G(t,s)dM(s) for t[0,T], where M is a square-integrable continuous martingale and G is a deterministic kernel. Let m be an odd integer. Under the assumption that the quadratic variation [M] of M is differentiable with 𝐄[|d[M](t)/dt| m ] finite, it is shown that the mth power variation

lim ε0 ε -1 0 T dsXs+ε-Xs m
exists and is zero when a quantity δ 2 (r) related to the variance of an increment of M over a small interval of length r satisfies δ(r)=o(r 1/(2m) ). When M is the Wiener process, X is Gaussian; the class then includes fractional Brownian motion and other Gaussian processes with or without stationary increments. When X is Gaussian and has stationary increments, δ is X’s univariate canonical metric, and the condition on δ is proved to be necessary. In the non-stationary Gaussian case, when m=3, the symmetric (generalized Stratonovich) integral is defined, proved to exist, and its Itô’s formula is established for all functions of class C 6 .

Reçu le :
DOI : 10.1051/ps/2014031
Classification : 60G07, 60G15, 60G48, 60H05
Mots-clés : Power variation, martingale, calculusvia regularization, Gaussian processes, generalized Stratonovich integral, non-Gaussian processes
Russo, Francesco 1, 2 ; Viens, Frederi 3

1 ENSTA-ParisTech. Unité de Mathématiques appliquées, 828, bd des Maréchaux, 91120 Palaiseau, France
2 INRIA Rocquencourt, Projet MathFi and Cermics, École des Ponts, Rocquencourt, France
3 Department of Statistics, Purdue University, 150 N. University St., West Lafayette, IN 47907-2067, USA
@article{PS_2015__19__414_0,
     author = {Russo, Francesco and Viens, Frederi},
     title = {Gaussian and {non-Gaussian} processes of zero power variation},
     journal = {ESAIM: Probability and Statistics},
     pages = {414--439},
     publisher = {EDP-Sciences},
     volume = {19},
     year = {2015},
     doi = {10.1051/ps/2014031},
     zbl = {1333.60114},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2014031/}
}
TY  - JOUR
AU  - Russo, Francesco
AU  - Viens, Frederi
TI  - Gaussian and non-Gaussian processes of zero power variation
JO  - ESAIM: Probability and Statistics
PY  - 2015
SP  - 414
EP  - 439
VL  - 19
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2014031/
DO  - 10.1051/ps/2014031
LA  - en
ID  - PS_2015__19__414_0
ER  - 
%0 Journal Article
%A Russo, Francesco
%A Viens, Frederi
%T Gaussian and non-Gaussian processes of zero power variation
%J ESAIM: Probability and Statistics
%D 2015
%P 414-439
%V 19
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2014031/
%R 10.1051/ps/2014031
%G en
%F PS_2015__19__414_0
Russo, Francesco; Viens, Frederi. Gaussian and non-Gaussian processes of zero power variation. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 414-439. doi : 10.1051/ps/2014031. http://www.numdam.org/articles/10.1051/ps/2014031/

R. Adler, An introduction to continuity, extrema, and related topics for general Gaussian processes. Inst. Math. Stat. Hayward, CA (1990). | Zbl

E. Alòs and D. Nualart, Stochastic integration with respect to fractional Brownian motion. Stoch. Stoch. Rep. 75 (2003) 129–152. | Zbl

E. Alòs, O. Mazet and D. Nualart, Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29 (1999) 766–801. | Zbl

J.-M. Azaïs and M. Wschebor, Almost sure oscillation of certain random processes. Bernoulli 2 (1996) 257–270. | Zbl

J. Bertoin, Sur une intégrale pour les processus à α-variation bornée. Ann. Probab. 17 (1989) 1521–1535. | Zbl

F. Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic calculus with respect to fractional Brownian motion and applications. Probab. Appl. Springer-Verlag (2008). | Zbl

C. Borell, On polynomial chaos and integrability. Probab. Math. Statist. 3 (1984) 191–203. | Zbl

P. Breuer and P. Major, Central limit theorems for non-linear functionals of Gaussian fields. J. Multivariate Anal. 13 (1983) 425–441. | Zbl

M. Bruneau, Variation totale d’une fonction. Vol. 413 of Lect. Notes Math. Springer-Verlag, Berlin-New York (1974). | Zbl

K. Burdzy, and J. Swanson, A change of variable formula with Itô correction term. Ann. Probab. 38 (2010) 1817–1869. | Zbl

Ph, Carmona, L. Coutin and G. Montseny, Stochastic integration with respect to fractional Brownian motion. Ann. Inst. Henri Poincaré, Probab. Statist. 39 (2003) 27–68. | Zbl

R.M. Dudley and R. Norvaiša, Differentiability of six operators on nonsmooth functions and p-variation.With the collaboration of Jinghua Qian. Vol. 1703 of Lect. Notes Math. Springer-Verlag, Berlin (1999). | Zbl

M. Errami and F. Russo, Covariation de convolution de martingales. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998) 601–606. | Zbl

M. Errami and F. Russo, n-covariation,generalized Dirichlet processes and calculus with respect to finite cubic variation processes. Stoch. Process. Appl. 104 (2003) 259–299. | Zbl

F. Flandoli and F. Russo, Generalized stochastic integration and stochastic ODE’s. Ann. Probab. 30 (2002) 270–292. | Zbl

H. Föllmer, Calcul d’Itô sans probabilités. In Séminaire de Probabilités, XV, Univ. Strasbourg, Strasbourg, 1979/1980 (French). In vol. 850 of Lect. Notes Math. Springer, Berlin (1981) 143–150. | Zbl

P. Friz and N. Victoir, Multidimensional Stochastic Processes as Rough Paths: Theory and Applications. Cambridge Stud. Adv. Math. Cambridge UP (2010). | Zbl

M. Gradinaru and I. Nourdin, Approximation at first and second order of m-order integrals of the fractional Brownian motion and of certain semimartingales. Electron. J. Probab. 8 (2003) 26. | Zbl

M. Gradinaru, F. Russo and P. Vallois, Generalized covariations, local time and Stratonovich Itô’s formula for fractional Brownian motion with Hurst index H1 4. Ann. Pobab. 31 (2003) 1772–1820. | Zbl

M. Gradinaru, I. Nourdin, F. Russo and P. Vallois, m-order integrals and Itô’s formula for non-semimartingale processes; the case of a fractional Brownian motion with any Hurst index. Ann. Inst. Henri Poincaré, Probab. Stat. 41 (2005) 781–806. | Zbl

Y. Hu, D. Nualart and J. Song, Fractional martingales and characterization of the fractional Brownian motion. Ann. Probab. 37 (2009) 2404–2430. | Zbl

I. Kruk and F. Russo, Malliavin-Skorohod calculus and Paley-Wiener integral for covariance singular processes. Preprint HAL-INRIA 00540914.

H.-H. Kuo, Introduction to stochastic integration. Springer (2006). | Zbl

T. Lyons and Z. Qian, System control and rough paths. Oxford Math. Monogr. Oxford University Press, Oxford (2002). | Zbl

O. Mocioalca and F. Viens, Skorohod integration and stochastic calculus beyond the fractional Brownian scale. J. Funct. Anal. 222 (2004) 385–434. | Zbl

I. Nourdin, A change of variable formula for the 2D fractional Brownian motion of Hurst index bigger or equal to 1/4. J. Funct. Anal. 256 (2009) 2304–2320. | Zbl

I. Nourdin and D. Nualart, Central limit theorems for multiple Skorohod integrals. J. Theoret. Probab. 23 39–64. | Zbl

I. Nourdin, D. Nualart and C. Tudor, Central and non-central limit theorems for weighted power variations of fractional Brownian motion. Ann. Inst. Henri Poincaré, Probab. Stat. 46 (2010) 1055–1079. | Zbl

I. Nourdin, A. Réveillac and J. Swanson, The weak Stratonovich integral with respect to fractional Brownian motion with Hurst parameter 1/6. Electron. J. Probab. 15 (2010) 2117–2162. | Zbl

D. Nualart, The Malliavin calculus and related topics, 2nd edition. Probab. Appl. Springer-Verlag (2006). | Zbl

D. Nualart and S. Ortiz-Latorre, Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stochastic Process. Appl. 118 (2008) 614–628. | Zbl

L.C.G. Rogers and J.B. Walsh, The exact 4/3-variation of a process arising from Brownian motion. Stoch. Stoch. Rep. 51 (1994) 267–291. | Zbl

F. Russo and C. Tudor, On the bifractional Brownian motion. Stoch. Process. Appl. 116 (2006) 830–856. | Zbl

F. Russo and P. Vallois, The generalized covariation process and Itô formula. Stoch. Process. Appl. 59 (1995) 81–104. | Zbl

F. Russo and P. Vallois, Stochastic calculus with respect to a finite quadratic variation process. Stoch. Stoch. Rep. 70 (2000) 1–40. | Zbl

F. Russo and P. Vallois, Elements of stochastic calculus via regularizations. Séminaire de Probabilités XL. Vol. 1899 of Lect. Notes Math. Springer, Berlin Heidelberg, New-York (2007) 147–186. | Zbl

F. Russo and F. Viens, Gaussian and non-Gaussian processes of zero power variation, and related stochastic calculus. Preprint arXiv:1407.4568 (2014).

S. Tindel, C.A. Tudor and F. Viens, Sharp Gaussian regularity on the circle and application to the fractional stochastic heat equation. J. Funct. Anal. 217 (2004) 280–313. | Zbl

F. Viens and A. Vizcarra, Supremum Concentration Inequality and Modulus of Continuity for Sub-nth Chaos Processes. J. Funct. Anal. 248 (2007) 1–26. | Zbl

Cité par Sources :