We study the asymptotic of the spectral distribution for large empirical covariance matrices composed of independent lognormal Multifractal Random Walk processes. The asymptotic is taken as the observation lag shrinks to
DOI : 10.1051/ps/2014028
Mots-clés : Multifractals, Marchenko-Pastur theorem, random matrices, Gaussian multiplicative chaos
@article{PS_2015__19__327_0, author = {Allez, Romain and Rhodes, R\'emi and Vargas, Vincent}, title = {Convergence of the spectrum of empirical covariance matrices for independent {MRW} processes}, journal = {ESAIM: Probability and Statistics}, pages = {327--360}, publisher = {EDP-Sciences}, volume = {19}, year = {2015}, doi = {10.1051/ps/2014028}, zbl = {1331.60015}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ps/2014028/} }
TY - JOUR AU - Allez, Romain AU - Rhodes, Rémi AU - Vargas, Vincent TI - Convergence of the spectrum of empirical covariance matrices for independent MRW processes JO - ESAIM: Probability and Statistics PY - 2015 SP - 327 EP - 360 VL - 19 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ps/2014028/ DO - 10.1051/ps/2014028 LA - en ID - PS_2015__19__327_0 ER -
%0 Journal Article %A Allez, Romain %A Rhodes, Rémi %A Vargas, Vincent %T Convergence of the spectrum of empirical covariance matrices for independent MRW processes %J ESAIM: Probability and Statistics %D 2015 %P 327-360 %V 19 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ps/2014028/ %R 10.1051/ps/2014028 %G en %F PS_2015__19__327_0
Allez, Romain; Rhodes, Rémi; Vargas, Vincent. Convergence of the spectrum of empirical covariance matrices for independent MRW processes. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 327-360. doi : 10.1051/ps/2014028. https://www.numdam.org/articles/10.1051/ps/2014028/
Log-normal continuous cascade model of asset returns: aggregation properties and estimation. Quant. Finance 13 (2013) 795–818. | Zbl
, and ,Log-infinitely divisible multifractal processes. Comm. Math. Phys. 236 (2003) 449–475. | Zbl
and ,Spectral measure of heavy tailed band and covariance random matrices. Comm. Math. Phys. 289 (2009) 1023–1055. | Zbl
, and ,The spectrum of heavy-tailed random matrices. Comm. Math. Phys. 278 (2008) 715–751. | Zbl
and ,Leverage effect in financial markets: The retarded volatility model. Phys. Rev. Lett. 87 (2001) 228701.
, and ,J.P. Bouchaud and M. Potters, Financial Applications of Random Matrix Theory: A Short Review. In Oxf. Handb. Random Matrix Theory. Oxford University Press (2011). | Zbl
J.P. Bouchaud and M. Potters, Theory of Financial Risk and Derivative Pricing. Cambridge University Press, Cambridge (2003). | Zbl
Empirical properties of asset returns: Stylized facts and statistical issues. Quant. Finance 1 (2001) 223–236. | Zbl
,Necessary and sufficient condition that the limit of Stieltjes transforms is a Stieltjes transform. J. Approx. Theory 121 (2003) 54–60. | Zbl
, ,A. Khorunzhy, B. Khoruzhenko, L. Pastur and M. Shcherbina, The large-n limit in statistical mechanics and the spectral theory of disordered systems. Phase Transitions and Critical Phenomena. In vol. 73. Academic Press, New-York (1992).
On the estimation of integrated covariance matrices of high dimensional diffusion processes. Ann. Statist. 39 (2011) 3121–3151. | Zbl
and ,Distribution of eigenvalues for some sets of random matrices. Math. USSR-Sb. 1 (1967) 457–483. | Zbl
and ,Gaussian multiplicative chaos and applications: a review. ESAIM: PS 11 (2014) 315–392. | Zbl
and ,On the limiting spectral distribution of the covariance matrices of time-lagged processes. J. Multivar. Anal. 101 (2010) 2434–2451. | Zbl
and ,Financial applications of random matrix theory: Old laces and new pieces. Acta Physica Polonica B 36 (2005) 2767. | Zbl
, and ,Forecasting volatility with the multifractal random walk model. Math. Finance 22 (2012) 83–108. | Zbl
, and ,Cité par Sources :