Consistency of the maximum likelihood estimate for non-homogeneous Markov–switching models
ESAIM: Probability and Statistics, Tome 19 (2015), pp. 268-292.

We prove the consistency of the maximum likelihood estimator for a large family of models generalizing the well known Markov-switching AutoRegressive (MS-AR) models by letting the transition probabilities vary in time and depend on covariates. We illustrate our theoretical result on the famous MacKenzie River lynx dataset and on a multi-site model for downscaling rainfall.

Reçu le :
DOI : 10.1051/ps/2014024
Classification : 62F12, 62M05
Mots clés : Markov-switching autoregressive process, non-homogeneous hidden Markov process, maximum likelihood, consistency, stability, lynx data
Ailliot, Pierre 1 ; Pène, Françoise 2

1 Universitéde Brest, UMR 6205, 29019 Brest, France
2 Université de Brest and IUF, UMR 6205, 29019 Brest, France
@article{PS_2015__19__268_0,
     author = {Ailliot, Pierre and P\`ene, Fran\c{c}oise},
     title = {Consistency of the maximum likelihood estimate for non-homogeneous {Markov{\textendash}switching} models},
     journal = {ESAIM: Probability and Statistics},
     pages = {268--292},
     publisher = {EDP-Sciences},
     volume = {19},
     year = {2015},
     doi = {10.1051/ps/2014024},
     mrnumber = {3412646},
     zbl = {1330.62101},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2014024/}
}
TY  - JOUR
AU  - Ailliot, Pierre
AU  - Pène, Françoise
TI  - Consistency of the maximum likelihood estimate for non-homogeneous Markov–switching models
JO  - ESAIM: Probability and Statistics
PY  - 2015
SP  - 268
EP  - 292
VL  - 19
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2014024/
DO  - 10.1051/ps/2014024
LA  - en
ID  - PS_2015__19__268_0
ER  - 
%0 Journal Article
%A Ailliot, Pierre
%A Pène, Françoise
%T Consistency of the maximum likelihood estimate for non-homogeneous Markov–switching models
%J ESAIM: Probability and Statistics
%D 2015
%P 268-292
%V 19
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2014024/
%R 10.1051/ps/2014024
%G en
%F PS_2015__19__268_0
Ailliot, Pierre; Pène, Françoise. Consistency of the maximum likelihood estimate for non-homogeneous Markov–switching models. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 268-292. doi : 10.1051/ps/2014024. http://www.numdam.org/articles/10.1051/ps/2014024/

P. Ailliot, Some theoretical results on Markov-switching autoregressive models with gamma innovations. C. R. Acad. Sci. Ser. I 343 (2006) 271–274. | MR | Zbl

P. Ailliot and V. Monbet, Markov-switching autoregressive models for wind time series. Environ. Model. Softw. 30 (2012) 92–101.

P. Ailliot, J. Bessac, V. Monbet, F. Pène, Non-homogeneous hidden Markov-switching models for wind time series. J. Stat. Plann. Inference 160 (2015) 75–88. | MR | Zbl

H.Z. An and F.C. Huang, The geometrical ergodicity of nonlinear autoregressive models. Stat. Sin. 6 (1996) 943–956. | MR | Zbl

E. Bellone, J.P. Hughes and P. Guttorp, A hidden Markov model for downscaling synoptic atmospheric patterns to precipitation amounts. Climate Res. 15 (2000) 1–12.

O. Cappé, E. Moulines and T. Rydén, Inference in Hidden Markov Models. Springer-Verlag, New York (2005). | MR | Zbl

R. Chen and R.S. Tsay, On the ergodicity of tar(1) processes. Ann. Appl. Probab. 1 (1991) 613–634. | MR | Zbl

F. Diebold, J-H Lee and G. Weinbach, Regime Switching with Time-Varying Transition Probabilities. Oxford University Press, Oxford (1994).

R. Douc and C. Matias, Asymptotics of the maximum-likelihood estimator for general hidden Markov models. Bernoulli 7 (2001) 381–420. | MR | Zbl

R. Douc, E. Moulines and T. Rydn, Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime. Ann. Stat. 32 (2004) 2254–2304. | MR | Zbl

J. Fan and Q. Yao, Nonlinear Time Series: Nonparametric and Parametric Methods. Springer, New York (2003). | MR | Zbl

C. Francq and M. Roussignol, Ergodicity of autoregressive processes with Markov-switching and consistency of the maximum-likelihood estimator. Statistics 32 (1998) 151–173. | MR | Zbl

J.D. Hamilton, A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57 (1989) 357–384. | MR | Zbl

J.P. Hughes, P. Guttorp and S.P. Charles, A non-homogeneous hidden Markov model for precipitation occurrence. J. R. Stat. Soc. Series C 48 (1999) 15–30. | Zbl

C. Kim, J. Piger and R. Startz, Estimation of Markov regime-switching regression models with endogenous switching. J. Econ. 143 (2008) 263–273. | MR | Zbl

V. Krishnamurthy and T. Ryden, Consistent estimation of linear and non-linear autoregressive models with Markov regime. J. Time Ser. Anal. 19 (1998) 291–307. | MR | Zbl

H.M. Krolzig, Markov-switching vector autoregressions: modelling, statistical inference, and application to business cycle analysis. Lect. Notes Econ. Math. Systems 454 (1997). | MR | Zbl

F. Le Gland and L. Mevel, Exponential forgetting and geometric ergodicity in hidden Markov models. Math. Control, Signals Syst. 13 (2000) 63–93. | MR | Zbl

B. Leroux, Maximum-likelihood estimation for hidden Markov models. Stoch. Proc. Appl. 40 (1992) 127–143. | MR | Zbl

T. Lindvall, Lectures on the Coupling Method. Corrected reprint of the 1992 original. Dover Publications, Inc., Mineola, NY (2002). | MR | Zbl

S.P. Meyn, R.L Tweedie and P.W. Glynn, Markov Chains and Stochastic Stability. Cambridge, Cambridge University Press (2009), vol. 2. | MR

H. Teicher, Identifiability of finite mixtures. Ann. Math. Stat. 34 (1963) 1265–1269. | MR | Zbl

H. Tong, Non-Linear Time Series: A Dynamical System Approach. Oxford, UK, Oxford University Press (1990). | MR | Zbl

I. Visser, M.E.J. Raijmakers and P. Molenaar, Confidence intervals for hidden Markov model parameters. British J. Math. Stat. Psychol. 53 (2000) 317–327.

M. Vrac and P. Naveau, Stochastic downscaling of precipitation: From dry events to heavy rainfalls. Water Res. Research 43 (2007) W07402.

J.F. Yao, On square-integrability of an AR process with Markov switching. Stat. Probab. Lett. 52 (2001) 265–270. | MR | Zbl

J.F. Yao and J.G. Attali, On stability of nonlinear AR processes with Markov switching. Adv. Appl. Probab. 32 (2000) 394–407. | MR | Zbl

Cité par Sources :