Model selection for Poisson processes with covariates
ESAIM: Probability and Statistics, Tome 19 (2015), pp. 204-235.

We observe n inhomogeneous Poisson’s processes with covariates and aim at estimating their intensities. We assume that the intensity of each Poisson’s process is of the form s(·,x) where x is a covariate and where s is an unknown function. We propose a model selection approach where the models are used to approximate the multivariate function s. We show that our estimator satisfies an oracle-type inequality under very weak assumptions both on the intensities and the models. By using an Hellinger-type loss, we establish non-asymptotic risk bounds and specify them under several kind of assumptions on the target function s such as being smooth or a product function. Besides, we show that our estimation procedure is robust with respect to these assumptions. This procedure is of theoretical nature but yields results that cannot currently be obtained by more practical ones.

Reçu le :
DOI : 10.1051/ps/2014022
Classification : 62M05, 62G05
Mots clés : Adaptive estimation, model selection, Poisson processes, T-estimator
Sart, Mathieu 1

1 Univ. Nice Sophia Antipolis, CNRS, LJAD, UMR 7351, 06100 Nice, France.
@article{PS_2015__19__204_0,
     author = {Sart, Mathieu},
     title = {Model selection for {Poisson} processes with covariates},
     journal = {ESAIM: Probability and Statistics},
     pages = {204--235},
     publisher = {EDP-Sciences},
     volume = {19},
     year = {2015},
     doi = {10.1051/ps/2014022},
     mrnumber = {3394490},
     zbl = {1392.62253},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2014022/}
}
TY  - JOUR
AU  - Sart, Mathieu
TI  - Model selection for Poisson processes with covariates
JO  - ESAIM: Probability and Statistics
PY  - 2015
SP  - 204
EP  - 235
VL  - 19
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2014022/
DO  - 10.1051/ps/2014022
LA  - en
ID  - PS_2015__19__204_0
ER  - 
%0 Journal Article
%A Sart, Mathieu
%T Model selection for Poisson processes with covariates
%J ESAIM: Probability and Statistics
%D 2015
%P 204-235
%V 19
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2014022/
%R 10.1051/ps/2014022
%G en
%F PS_2015__19__204_0
Sart, Mathieu. Model selection for Poisson processes with covariates. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 204-235. doi : 10.1051/ps/2014022. http://www.numdam.org/articles/10.1051/ps/2014022/

A. Antoniadis and T. Sapatinas, Wavelet shrinkage for natural exponential families with quadratic variance functions. Biometrika 88 (2001) 805–820. | MR | Zbl

A. Antoniadis, P. Besbeas and T. Sapatinas, Wavelet shrinkage for natural exponential families with cubic variance functions. Sankhyā. Indian J. Stat., Series A 63 (2001) 309–327. | MR | Zbl

Y. Baraud, Estimator selection with respect to Hellinger-type risks. Probab. Theory Relat. Fields 151 (2011) 353–401. | MR | Zbl

Y. Baraud and L. Birgé, Estimating the intensity of a random measure by histogram type estimators. Probab. Theory Relat. Fields 143 (2009) 239–284. | MR | Zbl

Y. Baraud and L. Birgé, Estimating composite functions by model selection. Ann. Inst. Henri Poincaré, Probab. Stat. 50 (2014) 285–314. | MR | Zbl

A.R. Barron and T.M. Cover, Minimum complexity density estimation. IEEE Trans. Inform. Theory 37 (1991) 1034–1054. | MR | Zbl

L. Birgé, Model selection via testing: an alternative to (penalized) maximum likelihood estimators. Ann. Inst. Henri Poincaré, Probab. Stat. 42 (2006) 273–325. | MR | Zbl

L. Birgé, Model selection for Poisson processes. In Asymptotics: particles, processes and inverse problems. In vol. 55 of IMS Lect. Notes Monogr. Ser. Inst. Math. Statist., Beachwood, OH (2007) 32–64. | MR | Zbl

L. Birgé, Model selection for density estimation with L 2 -loss. Probab. Theory Relat. Fields (2013) 1–42. | MR | Zbl

F. Comte, S. Gaïffas and A. Guilloux, Adaptive estimation of the conditional intensity of marker-dependent counting processes. Ann. Inst. Henri Poincaré, Probab. Stat. 47 (2011) 1171–1196. | MR | Zbl

W. Dahmen, R. Devore and K. Scherer, Multi-dimensional spline approximation. SIAM J. Numer. Anal. 17 (1980) 380–402. | MR | Zbl

J.T. Duane, Learning curve approach to reliability monitoring. IEEE Trans. Aerospace 2 (1964) 563–566.

A.L. Goel and K. Okumoto, Time-dependent error-detection rate model for software reliability and other performance measures. IEEE Trans. Reliab. R-28 (1979) 206–211. | Zbl

A. Juditsky, O. Lepski and A. Tsybakov, Nonparametric estimation of composite functions. Ann. Stat. 37 (2009) 1360–1404. | MR | Zbl

K. Krishnamurthy, M. Raginsky and R. Willett, Multiscale photon-limited spectral image reconstruction. SIAM J. Imaging Sci. 3 (2010) 619–645. | MR | Zbl

P. Massart, Concentration inequalities and model selection. École d’été de Probabilités de Saint-Flour. In vol. 1896 of Lect. Notes Math. Springer, Berlin/Heidelberg (2003). | MR | Zbl

P. Reynaud-Bouret, Adaptive estimation of the intensity of inhomogeneous poisson processes via concentration inequalities. Probab. Theory Relat. Fields 126 (2003) 103–153. | MR | Zbl

S. Yamada, O. Mitsuru and S. Osaki, S-shaped reliability growth modeling for software error detection. IEEE Trans. Reliab. 32 (1983) 475–484.

Cité par Sources :