Operator scaled Wiener bridges
ESAIM: Probability and Statistics, Tome 19 (2015), pp. 100-114.

We introduce operator scaled Wiener bridges by incorporating a matrix scaling in the drift part of the SDE of a multidimensional Wiener bridge. A sufficient condition for the bridge property of the SDE solution is derived in terms of the eigenvalues of the scaling matrix. We analyze the asymptotic behavior of the bridges and briefly discuss the question whether the scaling matrix determines uniquely the law of the corresponding bridge.

Reçu le :
DOI : 10.1051/ps/2014016
Classification : 60G15, 60F15, 60G17, 60J60
Mots-clés : Multidimensional Wiener bridge, operator scaling, strong law of large numbers, asymptotic behavior
Barczy, Mátyás 1 ; Kern, Peter 2 ; Krause, Vincent 3

1 Faculty of Informatics, University of Debrecen, Pf. 12, 4010 Debrecen, Hungary
2 Mathematisches Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
3 Keltenstr. 19, 41462 Neuss, Germany
@article{PS_2015__19__100_0,
     author = {Barczy, M\'aty\'as and Kern, Peter and Krause, Vincent},
     title = {Operator scaled {Wiener} bridges},
     journal = {ESAIM: Probability and Statistics},
     pages = {100--114},
     publisher = {EDP-Sciences},
     volume = {19},
     year = {2015},
     doi = {10.1051/ps/2014016},
     mrnumber = {3374871},
     zbl = {1333.60116},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2014016/}
}
TY  - JOUR
AU  - Barczy, Mátyás
AU  - Kern, Peter
AU  - Krause, Vincent
TI  - Operator scaled Wiener bridges
JO  - ESAIM: Probability and Statistics
PY  - 2015
SP  - 100
EP  - 114
VL  - 19
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2014016/
DO  - 10.1051/ps/2014016
LA  - en
ID  - PS_2015__19__100_0
ER  - 
%0 Journal Article
%A Barczy, Mátyás
%A Kern, Peter
%A Krause, Vincent
%T Operator scaled Wiener bridges
%J ESAIM: Probability and Statistics
%D 2015
%P 100-114
%V 19
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2014016/
%R 10.1051/ps/2014016
%G en
%F PS_2015__19__100_0
Barczy, Mátyás; Kern, Peter; Krause, Vincent. Operator scaled Wiener bridges. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 100-114. doi : 10.1051/ps/2014016. http://www.numdam.org/articles/10.1051/ps/2014016/

M. Barczy and G. Pap, Alpha-Wiener bridges: singularity of induced measures and sample path properties. Stochastic Anal. Appl. 28 (2010) 447–466. | MR | Zbl

M.J. Brennan and E.S. Schwartz, Arbitrage in stock index futures. J. Business 63 (1990) 7–31.

I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed. Springer, Berlin (1991). | MR

H.-H. Kuo, Introduction to Stochastic Integration, Universitext. Springer, New York (2006). | MR | Zbl

R. Mansuy, On a one-parameter generalization of the Brownian bridge and associated quadratic functionals. J. Theor. Probab. 17 (2004) 1021–1029. | MR | Zbl

M.M. Meerschaert and H.P. Scheffler, Limit Distributions for Sums of Independent Random Vectors. Wiley, New York (2001). | MR | Zbl

D. Revuz and M. Yor, Continuous Martingales and Brownian Motion. 3rd ed., corr. 2nd printing. Springer, Berlin (2001). | MR | Zbl

D. Sondermann, M. Trede and B. Wilfling, Estimating the degree of interventionist policies in the run-up to EMU, Appl. Econ. 43 (2011) 207–218.

M. Trede and B. Wilfling, Estimating exchange rate dynamics with diffusion processes: an application to Greek EMU data. Empirical Econ. 33 (2007) 23–39.

Cité par Sources :