Adaptive estimation of a density function using beta kernels
ESAIM: Probability and Statistics, Tome 18 (2014), pp. 400-417.

In this paper we are interested in the estimation of a density - defined on a compact interval of ℝ- from n independent and identically distributed observations. In order to avoid boundary effect, beta kernel estimators are used and we propose a procedure (inspired by Lepski's method) in order to select the bandwidth. Our procedure is proved to be adaptive in an asymptotically minimax framework. Our estimator is compared with both the cross-validation algorithm and the oracle estimator using simulated data.

DOI : 10.1051/ps/2014010
Classification : 62G05, 62G07, 62G20
Mots clés : beta kernels, adaptive estimation, minimax rates, Hölder spaces
@article{PS_2014__18__400_0,
     author = {Bertin, Karine and Klutchnikoff, Nicolas},
     title = {Adaptive estimation of a density function using beta kernels},
     journal = {ESAIM: Probability and Statistics},
     pages = {400--417},
     publisher = {EDP-Sciences},
     volume = {18},
     year = {2014},
     doi = {10.1051/ps/2014010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2014010/}
}
TY  - JOUR
AU  - Bertin, Karine
AU  - Klutchnikoff, Nicolas
TI  - Adaptive estimation of a density function using beta kernels
JO  - ESAIM: Probability and Statistics
PY  - 2014
SP  - 400
EP  - 417
VL  - 18
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2014010/
DO  - 10.1051/ps/2014010
LA  - en
ID  - PS_2014__18__400_0
ER  - 
%0 Journal Article
%A Bertin, Karine
%A Klutchnikoff, Nicolas
%T Adaptive estimation of a density function using beta kernels
%J ESAIM: Probability and Statistics
%D 2014
%P 400-417
%V 18
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2014010/
%R 10.1051/ps/2014010
%G en
%F PS_2014__18__400_0
Bertin, Karine; Klutchnikoff, Nicolas. Adaptive estimation of a density function using beta kernels. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 400-417. doi : 10.1051/ps/2014010. http://www.numdam.org/articles/10.1051/ps/2014010/

[1] B. Abdous and C.C. Kokonendji, Consistency and asymptotic normality for discrete associated-kernel estimator. Afr. Diaspora J. Math. 8 (2009) 63-70. | MR | Zbl

[2] K. Bertin and N. Klutchnikoff, Minimax properties of beta kernel estimators. J. Statist. Plan. Inference 141 (2011) 2287-2297. | MR | Zbl

[3] T. Bouezmarni and S. Van Bellegem, Nonparametric beta kernel estimator for long memory time series. Technical report (2009).

[4] T. Bouezmarni and J.V.K. Rombouts, Nonparametric density estimation for multivariate bounded data. J. Statist. Plann. Inference 140 (2010) 139-152. | MR | Zbl

[5] S.X. Chen, Beta kernel estimators for density functions. Comput. Statist. Data Anal. 31 (1999) 131-145. | MR | Zbl

[6] S.X. Chen, Beta kernel smoothers for regression curves. Statist. Sinica 10 (2000) 73-91. | MR | Zbl

[7] D.B.H. Cline and J.D. Hart, Kernel estimation of densities with discontinuities or discontinuous derivatives. Statistics 22 (1991) 69-84. | MR | Zbl

[8] I. Dattner and B. Reiser, Estimation of distribution functions in measurement error models. Technical report (2010).

[9] L. Devroye and G. Lugosi, Combinatorial methods in density estimation. Springer Series in Statistics. Springer-Verlag, New York (2001). | MR | Zbl

[10] E. Giné and R. Latała and J. Zinn, Exponential and moment inequalities for U-statistics. High dimensional probability, vol. II (Seattle, WA, 1999), Birkhäuser Boston, Boston, MA. Progr. Probab. 47 (2000) 13-38. | MR | Zbl

[11] J. Gustafsson, M. Hagmann, J.P. Nielsen and O. Scaillet, Local transformation kernel density estimation of loss distributions. J. Bus. Econ. Statist. 27 (2009) 161-175. | MR

[12] P. Hall, Large sample optimality of least squares cross-validation in density estimation. Ann. Statist. 11 (1983) 1156-1174. | MR | Zbl

[13] I.A. Ibragimov and R.Z. Khas'Minskiĭ, More on estimation of the density of a distribution. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 108 194, 198 (1981) 72-88. | MR | Zbl

[14] M.C. Jones, Simple boundary correction for kernel density estimation. Statist. Comput. 3 (1993) 135-146. | Zbl

[15] C.C. Kokonendji and T.S. Kiessé, Discrete associated kernels method and extensions. Statist. Methodol. 8 (2011) 497-516. | MR | Zbl

[16] M. Lejeune and P. Sarda, Smooth estimators of distribution and density functions. Comput. Statist. Data Anal. 14 (1992) 457-471. | MR | Zbl

[17] O.V. Lepski, Asymptotically minimax adaptive estimation. I. Upper bounds. Optimally adaptive estimates. Teor. Veroyatnost. i Primenen. 36 (1991) 645-659. | MR | Zbl

[18] C. Mcdiarmid, On the method of bounded differences, in Surveys in combinatorics (Norwich 1989), vol. 141 of London Math. Soc. Lecture Note Ser. Cambridge University Press, Cambridge (1989) 148-188. | MR | Zbl

[19] H.-G. Müller, Smooth optimum kernel estimators near endpoints. Biometrika 78 (1991) 521-530. | MR | Zbl

[20] O. Renault and O. Scaillet, On the way to recovery: A nonparametric bias free estimation of recovery rate densities. J. Banking and Finance 28 (2004) 2915-2931.

[21] E.F. Schuster, Incorporating support constraints into nonparametric estimators of densities. Commun. Statist. − Theory Methods 14 (1985) 1123-1136. | MR | Zbl

[22] B.W. Silverman, Density estimation for statistics and data analysis. Monogr. Statist. Appl. Probability. Chapman & Hall, London (1986). | MR | Zbl

[23] Ch.J. Stone, An asymptotically optimal window selection rule for kernel density estimates. Ann. Statist. 12 (1984) 1285-1297. | MR | Zbl

[24] Sh. Zhang and R.J. Karunamuni, On kernel density estimation near endpoints. J. Statist. Plann. Inference 70 (1998) 301-316. | MR | Zbl

[25] H. Victor De La Peña and S.J. Montgomery-Smith, Decoupling inequalities for the tail probabilities of multivariate U-statistics. Ann. Probab. 23 (1995) 806-816. | MR | Zbl

Cité par Sources :