In this paper we are interested in the estimation of a density - defined on a compact interval of ℝ- from n independent and identically distributed observations. In order to avoid boundary effect, beta kernel estimators are used and we propose a procedure (inspired by Lepski's method) in order to select the bandwidth. Our procedure is proved to be adaptive in an asymptotically minimax framework. Our estimator is compared with both the cross-validation algorithm and the oracle estimator using simulated data.
Mots-clés : beta kernels, adaptive estimation, minimax rates, Hölder spaces
@article{PS_2014__18__400_0, author = {Bertin, Karine and Klutchnikoff, Nicolas}, title = {Adaptive estimation of a density function using beta kernels}, journal = {ESAIM: Probability and Statistics}, pages = {400--417}, publisher = {EDP-Sciences}, volume = {18}, year = {2014}, doi = {10.1051/ps/2014010}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2014010/} }
TY - JOUR AU - Bertin, Karine AU - Klutchnikoff, Nicolas TI - Adaptive estimation of a density function using beta kernels JO - ESAIM: Probability and Statistics PY - 2014 SP - 400 EP - 417 VL - 18 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2014010/ DO - 10.1051/ps/2014010 LA - en ID - PS_2014__18__400_0 ER -
%0 Journal Article %A Bertin, Karine %A Klutchnikoff, Nicolas %T Adaptive estimation of a density function using beta kernels %J ESAIM: Probability and Statistics %D 2014 %P 400-417 %V 18 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2014010/ %R 10.1051/ps/2014010 %G en %F PS_2014__18__400_0
Bertin, Karine; Klutchnikoff, Nicolas. Adaptive estimation of a density function using beta kernels. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 400-417. doi : 10.1051/ps/2014010. http://www.numdam.org/articles/10.1051/ps/2014010/
[1] Consistency and asymptotic normality for discrete associated-kernel estimator. Afr. Diaspora J. Math. 8 (2009) 63-70. | MR | Zbl
and ,[2] Minimax properties of beta kernel estimators. J. Statist. Plan. Inference 141 (2011) 2287-2297. | MR | Zbl
and ,[3] Nonparametric beta kernel estimator for long memory time series. Technical report (2009).
and ,[4] Nonparametric density estimation for multivariate bounded data. J. Statist. Plann. Inference 140 (2010) 139-152. | MR | Zbl
and ,[5] Beta kernel estimators for density functions. Comput. Statist. Data Anal. 31 (1999) 131-145. | MR | Zbl
,[6] Beta kernel smoothers for regression curves. Statist. Sinica 10 (2000) 73-91. | MR | Zbl
,[7] Kernel estimation of densities with discontinuities or discontinuous derivatives. Statistics 22 (1991) 69-84. | MR | Zbl
and ,[8] Estimation of distribution functions in measurement error models. Technical report (2010).
and ,[9] Combinatorial methods in density estimation. Springer Series in Statistics. Springer-Verlag, New York (2001). | MR | Zbl
and ,[10] E. Giné and R. Latała and J. Zinn, Exponential and moment inequalities for U-statistics. High dimensional probability, vol. II (Seattle, WA, 1999), Birkhäuser Boston, Boston, MA. Progr. Probab. 47 (2000) 13-38. | MR | Zbl
[11] Local transformation kernel density estimation of loss distributions. J. Bus. Econ. Statist. 27 (2009) 161-175. | MR
, , and ,[12] Large sample optimality of least squares cross-validation in density estimation. Ann. Statist. 11 (1983) 1156-1174. | MR | Zbl
,[13] More on estimation of the density of a distribution. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 108 194, 198 (1981) 72-88. | MR | Zbl
and ,[14] Simple boundary correction for kernel density estimation. Statist. Comput. 3 (1993) 135-146. | Zbl
,[15] Discrete associated kernels method and extensions. Statist. Methodol. 8 (2011) 497-516. | MR | Zbl
and ,[16] Smooth estimators of distribution and density functions. Comput. Statist. Data Anal. 14 (1992) 457-471. | MR | Zbl
and ,[17] Asymptotically minimax adaptive estimation. I. Upper bounds. Optimally adaptive estimates. Teor. Veroyatnost. i Primenen. 36 (1991) 645-659. | MR | Zbl
,[18] On the method of bounded differences, in Surveys in combinatorics (Norwich 1989), vol. 141 of London Math. Soc. Lecture Note Ser. Cambridge University Press, Cambridge (1989) 148-188. | MR | Zbl
,[19] Smooth optimum kernel estimators near endpoints. Biometrika 78 (1991) 521-530. | MR | Zbl
,[20] On the way to recovery: A nonparametric bias free estimation of recovery rate densities. J. Banking and Finance 28 (2004) 2915-2931.
and ,[21] Incorporating support constraints into nonparametric estimators of densities. Commun. Statist. − Theory Methods 14 (1985) 1123-1136. | MR | Zbl
,[22] Density estimation for statistics and data analysis. Monogr. Statist. Appl. Probability. Chapman & Hall, London (1986). | MR | Zbl
,[23] An asymptotically optimal window selection rule for kernel density estimates. Ann. Statist. 12 (1984) 1285-1297. | MR | Zbl
,[24] On kernel density estimation near endpoints. J. Statist. Plann. Inference 70 (1998) 301-316. | MR | Zbl
and ,[25] Decoupling inequalities for the tail probabilities of multivariate U-statistics. Ann. Probab. 23 (1995) 806-816. | MR | Zbl
and ,Cité par Sources :