Local polynomial estimation of the mean function and its derivatives based on functional data and regular designs
ESAIM: Probability and Statistics, Tome 18 (2014), pp. 881-899.

We study the estimation of the mean function of a continuous-time stochastic process and its derivatives. The covariance function of the process is assumed to be nonparametric and to satisfy mild smoothness conditions. Assuming that n independent realizations of the process are observed at a sampling design of size N generated by a positive density, we derive the asymptotic bias and variance of the local polynomial estimator as n,N increase to infinity. We deduce optimal sampling densities, optimal bandwidths, and propose a new plug-in bandwidth selection method. We establish the asymptotic performance of the plug-in bandwidth estimator and we compare, in a simulation study, its performance for finite sizes n,N to the cross-validation and the optimal bandwidths. A software implementation of the plug-in method is available in the R environment.

DOI : 10.1051/ps/2014009
Classification : 62G08, 62G20
Mots clés : local polynomial smoothing, derivative estimation, functional data, sampling density, plug-in bandwidth
@article{PS_2014__18__881_0,
     author = {Benhenni, Karim and Degras, David},
     title = {Local polynomial estimation of the mean function and its derivatives based on functional data and regular designs},
     journal = {ESAIM: Probability and Statistics},
     pages = {881--899},
     publisher = {EDP-Sciences},
     volume = {18},
     year = {2014},
     doi = {10.1051/ps/2014009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2014009/}
}
TY  - JOUR
AU  - Benhenni, Karim
AU  - Degras, David
TI  - Local polynomial estimation of the mean function and its derivatives based on functional data and regular designs
JO  - ESAIM: Probability and Statistics
PY  - 2014
SP  - 881
EP  - 899
VL  - 18
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2014009/
DO  - 10.1051/ps/2014009
LA  - en
ID  - PS_2014__18__881_0
ER  - 
%0 Journal Article
%A Benhenni, Karim
%A Degras, David
%T Local polynomial estimation of the mean function and its derivatives based on functional data and regular designs
%J ESAIM: Probability and Statistics
%D 2014
%P 881-899
%V 18
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2014009/
%R 10.1051/ps/2014009
%G en
%F PS_2014__18__881_0
Benhenni, Karim; Degras, David. Local polynomial estimation of the mean function and its derivatives based on functional data and regular designs. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 881-899. doi : 10.1051/ps/2014009. http://www.numdam.org/articles/10.1051/ps/2014009/

[1] K. Benhenni and S. Cambanis, Sampling designs for estimating integrals of stochastic processes. Ann. Statist. 20 (1992) 161-194. | MR | Zbl

[2] K. Benhenni and M. Rachdi, Nonparametric estimation of the regression function from quantized observations. Comput. Statist. Data Anal. 50 (2006) 3067-3085. | MR

[3] K. Benhenni and M. Rachdi, Nonparametric estimation of average growth curve with general nonstationary error process. Comm. Statist. Theory Methods 36 (2007) 1173-1186. | MR | Zbl

[4] S. Cambanis, Sampling designs for time series, in Time Series in the Time Domain. Edited by P.R. Krishnaiah E.J. Hannan and M.M. Rao, vol. 5 of Handbook of Statistics. Elsevier (1985) 337-362 | MR

[5] H. Cardot, Nonparametric estimation of smoothed principal components analysis of sampled noisy functions. J. Nonparametr. Statist. 12 (2000) 503-538. | MR | Zbl

[6] D. Degras, Asymptotics for the nonparametric estimation of the mean function of a random process. Statist. Probab. Lett. 78 (2008) 2976-2980. | MR | Zbl

[7] D. Degras, Simultaneous confidence bands for nonparametric regression with functional data. Statist. Sinica 21 (2011) 1735-1765. | MR | Zbl

[8] J. Fan and I. Gijbels, Local polynomial modelling and its applications. Vol. 66 of Monogr. Stat. Appl. Probab. Chapman & Hall, London (1996). | MR | Zbl

[9] J. Fan, I. Gijbels, T.C. Hu and L.S. Huang, A study of variable bandwidth selection for local polynomial regression. Statist. Sinica 6 (1996) 113-127. | MR | Zbl

[10] J. Fan and J.S. Marron, Fast implementations of nonparametric curve estimators. J. Comput. Graph. Statist. 3 (1994) 35-56.

[11] E. Ferreira, V. Núñez-Antón and J. Rodríguez-Póo, Kernel regression estimates of growth curves using nonstationary correlated errors. Statist. Probab. Lett. 34 (1997) 413-423. | MR | Zbl

[12] M. Francisco-Fernández, J. Opsomer and J. M. Vilar-Fernández, Plug-in bandwidth selector for local polynomial regression estimator with correlated errors. J. Nonparametr. Stat. 16 (2004) 127-151. | MR | Zbl

[13] M. Francisco-Fernández and J.M. Vilar-Fernández, Local polynomial regression estimation with correlated errors. Comm. Statist. Theory Methods 30 (2001) 1271-1293. | MR | Zbl

[14] P. Hall, S. Nath Lahiri and J. Polzehl, On bandwidth choice in nonparametric regression with both short- and long-range dependent errors. Ann. Statist. 23 (1995) 1921-1936. | MR | Zbl

[15] J.D. Hart and T.E. Wehrly, Kernel regression estimation using repeated measurements data. J. Amer. Statist. Assoc. 81 (1986) 1080-1088. | MR | Zbl

[16] J.D. Hart and T.E. Wehrly, Consistency of cross-validation when the data are curves. Stoch. Process. Appl. 45 (1993) 351-361. | MR | Zbl

[17] E. Masry, Local polynomial fitting under association. J. Multivariate Anal. 86 (2003) 330-359. | MR | Zbl

[18] E. Masry and J. Fan, Local polynomial estimation of regression functions for mixing processes. Scand. J. Statist. 24 (1997) 165-179. | MR | Zbl

[19] J. Opsomer, Y. Wang and Y. Yang, Nonparametric regression with correlated errors. Statist. Sci. 16 (2001) 134-153. | MR | Zbl

[20] A. Pérez-González, J.M. Vilar-Fernández and W. González-Manteiga, Asymptotic properties of local polynomial regression with missing data and correlated errors. Ann. Inst. Statist. Math. 61 (2009) 85-109. | MR | Zbl

[21] O. Perrin, Quadratic variation for Gaussian processes and application to time deformation. Stoch. Process. Appl. 82 (1999) 293-305. | MR | Zbl

[22] R. Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2013).

[23] J.O. Ramsay and B.W. Silverman, Functional data analysis. Springer Ser. Statist., 2nd edition. Springer, New York (2005). | MR | Zbl

[24] J.A. Rice and B.W. Silverman, Estimating the mean and covariance structure nonparametrically when the data are curves. J. Roy. Statist. Soc. Ser. B 53 (1991) 233-243. | MR | Zbl

[25] D. Ruppert, Empirical-bias bandwidths for local polynomial nonparametric regression and density estimation. J. Amer. Statist. Assoc. 92 (1997) 1049-1062. | MR | Zbl

[26] D. Ruppert, S.J. Sheather and M.P. Wand, An effective bandwidth selector for local least squares regression. J. Amer. Statist. Assoc. 90 (1995) 1257-1270. | MR | Zbl

[27] M.P. Wand and M.C. Jones, Kernel smoothing. Vol. 60 of Monogr. Statist. Appl. Probab. Chapman and Hall Ltd., London (1995). | MR | Zbl

[28] F. Yao, Asymptotic distributions of nonparametric regression estimators for longitudinal or functional data. J. Multivariate Anal. 98 (2007) 40-56. | MR | Zbl

Cité par Sources :