We study asymptotic behavior of Markov chain Monte Carlo (MCMC) procedures. Sometimes the performances of MCMC procedures are poor and there are great importance for the study of such behavior. In this paper we call degeneracy for a particular type of poor performances. We show some equivalent conditions for degeneracy. As an application, we consider the cumulative probit model. It is well known that the natural data augmentation (DA) procedure does not work well for this model and the so-called parameter-expanded data augmentation (PX-DA) procedure is considered to be a remedy for it. In the sense of degeneracy, the PX-DA procedure is better than the DA procedure. However, when the number of categories is large, both procedures are degenerate and so the PX-DA procedure may not provide good estimate for the posterior distribution.
Mots-clés : Markov chain Monte Carlo, asymptotic normality, cumulative link model
@article{PS_2014__18__713_0, author = {Kamatani, Kengo}, title = {Local degeneracy of {Markov} chain {Monte} {Carlo} methods}, journal = {ESAIM: Probability and Statistics}, pages = {713--725}, publisher = {EDP-Sciences}, volume = {18}, year = {2014}, doi = {10.1051/ps/2014004}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2014004/} }
Kamatani, Kengo. Local degeneracy of Markov chain Monte Carlo methods. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 713-725. doi : 10.1051/ps/2014004. http://www.numdam.org/articles/10.1051/ps/2014004/
[1] Comparison theorems for reversible markov chains. Ann. Appl. Probab. 696 (1993). | MR | Zbl
and ,[2] Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models. Ann. Statist. 13 (1985) 342-368. | MR | Zbl
and ,[3] On the stochastic matrices associated with certain queuing processes. Ann. Math. Statist. 24 (1953) 355-360. | MR | Zbl
,[4] A theoretical comparison of the data augmentation, marginal augmentation and PX-DA algorithms. Ann. Statist. 36 (2008) 532-554. | MR | Zbl
and ,[5] Stochastic processes. ISBN 3-540-20482-2. Lectures given at Aarhus University, Reprint of the 1969 original, edited and with a foreword by Ole E. Barndorff-Nielsen and Ken-iti Sato. Springer-Verlag, Berlin (2004). | MR | Zbl
,[6] Local weak consistency of Markov chain Monte Carlo methods with application to mixture model. Bull. Inf. Cyber. 45 (2013) 103-123. | MR | Zbl
,[7] Note on asymptotic properties of probit gibbs sampler. RIMS Kokyuroku 1860 (2013) 140-146.
,[8] Local consistency of Markov chain Monte Carlo methods. Ann. Inst. Stat. Math. 66 (2014) 63-74. | MR | Zbl
,[9] Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian computation. Biometrika 87 (2000) 353-369. | MR | Zbl
and ,[10] Parameter expansion for data augmentation. J. Am. Stat. Assoc. 94 (1999) 1264-1274. | MR | Zbl
and ,[11] X.-L. Meng and David van Dyk, Seeking efficient data augmentation schemes via conditional and marginal augmentation. Biometrika 86 (1999) 301-320. | MR | Zbl
[12] Seeking efficient data augmentation schemes via conditional and marginal augmentation. Biometrika 86 (1999) 301-320. | MR | Zbl
and ,[13] Markov Chains and Stochastic Stability. Springer (1993). | MR | Zbl
and ,[14] Antonietta. Mira, Ordering, Slicing and Splitting Monte Carlo Markov Chains. Ph.D. thesis, University of Minnesota (1998). | MR
[15] Optimum monte-carlo sampling using markov chains. Biometrika 60 (1973) 607-612. | MR | Zbl
,[16] General state space markov chains and mcmc algorithms. Prob. Surveys 1 (2004) 20-71. | MR | Zbl
and ,[17] Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Am. Stat. Assoc. 90 (1995) 558-566. | MR | Zbl
.[18] Quantitative convergence rates of markov chains: A simple account. Electron. Commun. Probab. 7 (2002) 123-128. | MR | Zbl
,[19] Convergence rates and asymptotic standard errors for Markov chain Monte Carlo algorithms for Bayesian probit regression. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 (2007) 607-623. | MR
and ,[20] Markov chains for exploring posterior distributions. Ann. Statist. 22 (1994) 1701-1762. | MR | Zbl
,[21] A note on Metropolis-Hastings kernels for general state spaces. Ann. Appl. Probab. 8 (1998) 1-9. | MR | Zbl
,[22] Applications of geometric bounds to the convergence rate of Markov chains on Rn. Stoch. Process. Appl. 87 20001-23. | MR | Zbl
.Cité par Sources :