Consider a mean-reverting equation, generalized in the sense it is driven by a 1-dimensional centered Gaussian process with Hölder continuous paths on [0,T] (T> 0). Taking that equation in rough paths sense only gives local existence of the solution because the non-explosion condition is not satisfied in general. Under natural assumptions, by using specific methods, we show the global existence and uniqueness of the solution, its integrability, the continuity and differentiability of the associated Itô map, and we provide an Lp-converging approximation with a rate of convergence (p ≫ 1). The regularity of the Itô map ensures a large deviation principle, and the existence of a density with respect to Lebesgue's measure, for the solution of that generalized mean-reverting equation. Finally, we study a generalized mean-reverting pharmacokinetic model.
Mots clés : stochastic differential equations, rough paths, large deviation principle, mean-reversion, gaussian processes
@article{PS_2014__18__799_0, author = {Marie, Nicolas}, title = {A generalized mean-reverting equation and applications}, journal = {ESAIM: Probability and Statistics}, pages = {799--828}, publisher = {EDP-Sciences}, volume = {18}, year = {2014}, doi = {10.1051/ps/2014002}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2014002/} }
Marie, Nicolas. A generalized mean-reverting equation and applications. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 799-828. doi : 10.1051/ps/2014002. http://www.numdam.org/articles/10.1051/ps/2014002/
[1] An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes. Inst. Math. Stat., Lect. Notes Monogr. Vol. 38, Ser. 12 (1990). | MR | Zbl
,[2] Rough Paths via Sewing Lemma. ESAIM: PS 16 (2012) 479-526. | Numdam | Zbl
,[3] Large Deviations Techniques and Applications. Stoch. Model. Appl. Probab. Springer-Verlag, New-York (1998). | MR | Zbl
and ,[4] Pharmacokinetics and Stochastic Differential Equations: Model and Methodology. Annual Meeting of the Population Approach Group in Europe (2011).
and ,[5] Liens entre équations différentielles stochastiques et ordinaires. C.R. Acad. Sci. Paris Ser. A-B 283 (1976) A939-A942. | MR | Zbl
,[6] Small-Time Asymptotics for Fast Mean-Reverting Stochastic Volatility Models (2010). Preprint arXiv:1009.2782. | MR | Zbl
, and ,[7] Applications of Malliavin Calculus to Monte-Carlo Methods in Finance. Finance Stoch. 3 (1999) 391-412. | MR | Zbl
, , , and ,[8] Multidimensional Stochastic Processes as Rough Paths: Theory and Applications. Vols 120 of Camb. Stud. Appl. Math. Cambridge University Press, Cambridge (2010). | MR | Zbl
and ,[9] Pharmacocinétique. Cours et Exercices. Université de Nice, U.E.R. de Médecine, Service de pharmacologie expérimentale et clinique, Ellipses (1989).
,[10] A Second Course in Stochastic Processes. Academic Press Inc., Harcourt Brace Jovanovich Publishers (1981). | MR | Zbl
and ,[11] Diffusion-driven Models for Physiological Processes. Int. Workshop on Appl. Probab. IWAP (2008).
, and ,[12] Isoperimetry and Gaussian Analysis. Ecole d'été de probabilité de Stain-Flour (1994). | Zbl
,[13] Controlled Differential Equations as Young Integrals: A Simple Approach. J. Differ. Eqs. 248 (2010) 1777-1798. | MR | Zbl
,[14] System Control and Rough Paths. Oxford University Press (2002). | MR | Zbl
and ,[15] Convergence to Equilibrium for Granular Media Equations and their Euler Schemes. Ann. Appl. Probab. 13 (2003) 540-560. | MR | Zbl
,[16] Concentration Inequalities for Euler Schemes. Springer-Verlag (2006) 355-371. | MR | Zbl
and ,[17] Euler-Maruyama Approximations in Mean-Reverting Stochastic Volatility Model under Regime-Switching. J. Appl. Math. Stoch. Anal. (2006). | MR | Zbl
, and ,[18] Sensitivities via Rough Paths (2011). Preprint arXiv:1108.0852.
,[19] Processus aléatoires gaussiens. Presses de l'Université de Montréal (1968). | MR | Zbl
,[20] The Malliavin Calculus and Related Topics. Second Edition. Probab. Appl. Springer (2006). | MR | Zbl
,[21] Fractional Geometric Mean Reversion Processes. J. Math. Anal. Appl. 330 (2011) 396-402. | MR | Zbl
,[22] A Large Deviation Principle in Hölder Norm for Multiple Fractional Integrals. (2007). Preprint arXiv:0702049.
and ,[23] Pharmacocinétique de population. Collection Pharmacologie médicale, Solal (2006).
,[24] On the Gap between Deterministic and Stochastic Ordinary Differential Equations. Ann. Probab. 6 (1978) 19-41. | MR | Zbl
,[25] A Highly Sensitive Mean-Reverting Process in Finance and the Euler-Maruyama Approximations. J. Math. Anal. Appl. 348 (2008) 540-554. | MR | Zbl
, and ,Cité par Sources :