In this note we propose an exact simulation algorithm for the solution of (1)
Mots clés : exact simulation methods, brownian motion with two-valued drift, one-dimensional diffusion, skew brownian motion, local time
@article{PS_2014__18__686_0, author = {\'Etor\'e, Pierre and Martinez, Miguel}, title = {Exact simulation for solutions of one-dimensional {Stochastic} {Differential} {Equations} with discontinuous drift}, journal = {ESAIM: Probability and Statistics}, pages = {686--702}, publisher = {EDP-Sciences}, volume = {18}, year = {2014}, doi = {10.1051/ps/2013053}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2013053/} }
TY - JOUR AU - Étoré, Pierre AU - Martinez, Miguel TI - Exact simulation for solutions of one-dimensional Stochastic Differential Equations with discontinuous drift JO - ESAIM: Probability and Statistics PY - 2014 SP - 686 EP - 702 VL - 18 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2013053/ DO - 10.1051/ps/2013053 LA - en ID - PS_2014__18__686_0 ER -
%0 Journal Article %A Étoré, Pierre %A Martinez, Miguel %T Exact simulation for solutions of one-dimensional Stochastic Differential Equations with discontinuous drift %J ESAIM: Probability and Statistics %D 2014 %P 686-702 %V 18 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2013053/ %R 10.1051/ps/2013053 %G en %F PS_2014__18__686_0
Étoré, Pierre; Martinez, Miguel. Exact simulation for solutions of one-dimensional Stochastic Differential Equations with discontinuous drift. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 686-702. doi : 10.1051/ps/2013053. http://www.numdam.org/articles/10.1051/ps/2013053/
[1] The law of the Euler scheme for stochastic differential equations: I. Convergence rate of the distribution function. Probab. Theory Related Fields 104 (1996) 43-60. | MR | Zbl
and ,[2] Some solvable stochastic control problems. In Analysis and optimisation of stochastic systems (Proc. Internat. Conf., Univ. Oxford, Oxford, 1978), Academic Press, London (1980) 3-10. | MR | Zbl
, and ,[3] Retrospective exact simulation of diffusion sample paths with applications. Bernoulli 12 (2006) 1077-1098. | MR | Zbl
, and ,[4] A factorisation of diffusion measure and finite sample path constructions. Methodol. Comput. Appl. Probab. 10 (2008) 85-104. | MR | Zbl
, and ,[5] MCMC methods for diffusion bridges. Stoch. Dyn. 8 (2008) 319-350. | MR | Zbl
, , and ,[6] Exact simulation of diffusions. Ann. Appl. Probab. 15 (2005) 2422-2444. | MR | Zbl
and ,[7] Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process. Monte Carlo Methods Appl. 19 (2013) 41-71. | MR | Zbl
and ,[8] An extension of P. Lévy's distributional properties to the case of a Brownian motion with drift. Bernoulli 6 (2000) 615-620. | MR | Zbl
and ,[9] Trivariate density of Brownian motion, its local and occupation times, with application to stochastic control. Ann. Probab. 12 (1984) 819-828. | MR | Zbl
and ,[10] Brownian motion and stochastic calculus, 2nd edn. vol. 113. In Grad. Texts Math. Springer-Verlag, New York (1991) 440-441. | MR | Zbl
and ,[11] One-dimensional stochastic differential equations involving the local times of the unknown process. In Stochastic analysis and applications (Swansea, 1983), Lecture Notes in Math., vol. 1095. Springer, Berlin (1984) 51-82. | MR | Zbl
,[12] Exact simulation of prices and greeks: application to cir. Preprint (2008).
and ,[13] Continuous martingales and Brownian motion, 3rd edn. Springer-Verlag (1999). | MR | Zbl
and ,[14] Modélisation de la dépendance et simulation de processus en finance. Ph.D. thesis, CERMICS - Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (2009).
,Cité par Sources :