We consider dependence coefficients for stationary Markov chains. We emphasize on some equivalencies for reversible Markov chains. We improve some known results and provide a necessary condition for Markov chains based on Archimedean copulas to be exponential ρ-mixing. We analyse the example of the Mardia and Frechet copula families using small sets.
Mots-clés : Markov chains, copula, mixing, reversible processes, ergodicity, small sets
@article{PS_2014__18__570_0, author = {Longla, Martial}, title = {On dependence structure of copula-based {Markov} chains}, journal = {ESAIM: Probability and Statistics}, pages = {570--583}, publisher = {EDP-Sciences}, volume = {18}, year = {2014}, doi = {10.1051/ps/2013052}, zbl = {1308.60087}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2013052/} }
Longla, Martial. On dependence structure of copula-based Markov chains. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 570-583. doi : 10.1051/ps/2013052. http://www.numdam.org/articles/10.1051/ps/2013052/
[1] Archimedean copulas and temporal dependence. Econ. Theory 28 (2012) 1165-1185. | MR | Zbl
,[2] Copulas and Temporal Dependence. Econometrica 78 (2010) 395-410. | MR | Zbl
,[3] Introduction to strong mixing conditions. Vol. 1, 2. Kendrick press (2007). | MR | Zbl
,[4] Chaos: A Statistical Perspective. Springer, New York (2001). | MR | Zbl
and ,[5] The functional central limit theorem for strongly mixing processes. Ann. Inst. Henri Poincaré, Section B, Tome 30 (1994) 63-82. | Numdam | MR | Zbl
, and ,[6] Some Aspects of Modeling Dependence in Copula-based Markov chains. J. Multiv. Anal. 111 (2012) 234-240. | MR | Zbl
and ,[7] Remarks on the speed of convergence of mixing coefficients and applications. Stat. Probab. Lett. 82 (2013) 2439-2445. | MR
,[8] An introduction to copulas. 2nd edition. Springer, New York (2006). | MR | Zbl
,Cité par Sources :