Fine regularity of stochastic processes is usually measured in a local way by local Hölder exponents and in a global way by fractal dimensions. In the case of multiparameter Gaussian random fields, Adler proved that these two concepts are connected under the assumption of increment stationarity property. The aim of this paper is to consider the case of Gaussian fields without any stationarity condition. More precisely, we prove that almost surely the Hausdorff dimensions of the range and the graph in any ball B(t0,ρ) are bounded from above using the local Hölder exponent at t0. We define the deterministic local sub-exponent of Gaussian processes, which allows to obtain an almost sure lower bound for these dimensions. Moreover, the Hausdorff dimensions of the sample path on an open interval are controlled almost surely by the minimum of the local exponents. Then, we apply these generic results to the cases of the set-indexed fractional Brownian motion on RN, the multifractional Brownian motion whose regularity function H is irregular and the generalized Weierstrass function, whose Hausdorff dimensions were unknown so far.
Mots clés : gaussian processes, Hausdorff dimension, (multi)fractional brownian motion, multiparameter processes, hölder regularity, stationarity
@article{PS_2014__18__418_0, author = {Herbin, Erick and Arras, Benjamin and Barruel, Geoffroy}, title = {From almost sure local regularity to almost sure {Hausdorff} dimension for gaussian fields}, journal = {ESAIM: Probability and Statistics}, pages = {418--440}, publisher = {EDP-Sciences}, volume = {18}, year = {2014}, doi = {10.1051/ps/2013044}, mrnumber = {3333997}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2013044/} }
TY - JOUR AU - Herbin, Erick AU - Arras, Benjamin AU - Barruel, Geoffroy TI - From almost sure local regularity to almost sure Hausdorff dimension for gaussian fields JO - ESAIM: Probability and Statistics PY - 2014 SP - 418 EP - 440 VL - 18 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2013044/ DO - 10.1051/ps/2013044 LA - en ID - PS_2014__18__418_0 ER -
%0 Journal Article %A Herbin, Erick %A Arras, Benjamin %A Barruel, Geoffroy %T From almost sure local regularity to almost sure Hausdorff dimension for gaussian fields %J ESAIM: Probability and Statistics %D 2014 %P 418-440 %V 18 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2013044/ %R 10.1051/ps/2013044 %G en %F PS_2014__18__418_0
Herbin, Erick; Arras, Benjamin; Barruel, Geoffroy. From almost sure local regularity to almost sure Hausdorff dimension for gaussian fields. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 418-440. doi : 10.1051/ps/2013044. http://www.numdam.org/articles/10.1051/ps/2013044/
[1] Hausdorff Dimension and Gaussian fields. Ann. Probab. 5 (1977) 145-151. | MR | Zbl
,[2] Random Fields and Geometry. Springer (2007). | MR | Zbl
and ,[3] Processus à régularité locale prescrite. C.R. Acad. Sci. Paris, Ser. I 333 (2001) 233-238. | MR | Zbl
and ,[4] Multiparameter multifractional brownian motion: local nondeterminism and joint continuity of the local times. Ann. Inst. H. Poincaré Probab. Statist (2011). | Numdam | MR | Zbl
, and ,[5] Asymptotic Properties and Hausdorff Dimensions of Fractional Brownian Sheets. J. Fourier Anal. Appl. 11 (2005) 407-439. | MR | Zbl
and ,[6] Hölder properties of local times for fractional Brownian motions. Metrika 69 (2009) 125-152. | MR
, and ,[7] Local self-similarity and the Hausdorff dimension. C.R. Acad. Sci. Paris, Ser. I 336 (2003) 267-272. | MR | Zbl
, and ,[8] Elliptic Gaussian random processes. Rev. Mat. Iberoamericana 13 (1997) 19-90. | MR | Zbl
, and ,[9] Gaussian sample functions: Uniform dimension and Hölder conditions nowhere. Nagoya Math. J. 46 (1972) 63-86. | MR | Zbl
,[10] Sample path properties of the local time of multifractional Brownian motion. Bernoulli 13 (2007) 849-867. | MR | Zbl
, and ,[11] Sample Functions of the Gaussian Process. Ann. Probab. 1 (1973) 66-103. | MR | Zbl
,[12] Fractal Geometry: Mathematical Foundation and Applications, 2nd edn. Wiley (2003). | MR | Zbl
,[13] E. Herbin, From N-parameter fractional Brownian motions to N-parameter multifractional Brownian motions. Rocky Mountain J. Math. 36 (2006) 1249-1284. | MR | Zbl
[14] Locally Asymptotic Self-similarity and Hölder Regularity. In preparation.
,[15] A set-indexed fractional Brownian motion. J. Theoret. Probab. 19 (2006) 337-364. | MR | Zbl
and ,[16] The Multiparameter fractional Brownian motion, in Math Everywhere. Edited by G. Aletti, M. Burger, A. Micheletti, D. Morale. Springer (2006). | MR | Zbl
and ,[17] Stochastic 2-microlocal analysis. Stoch. Process. Appl. 119 (2009) 2277-2311. | MR | Zbl
and ,[18] The Hausdorff dimension of graphs of Weierstrass functions. Proc. Amer. Math. Soc. 126 (1998) 791-800. | MR | Zbl
,[19] Some random series of functions. Cambridge studies in advanced mathematics. Cambridge University Press, 2nd edn. (1985). | MR | Zbl
,[20] Multiparameter processes: An Introduction to Random Fields. Springer Monographs in Mathematics. Springer-Verlag, New York (2002). | MR | Zbl
,[21] Lévy processes: capacity and Hausdorff dimension. Ann. Probab. 33 (2005) 841-878. | MR | Zbl
and ,[22] Optimal Hölder exponent for the SLE path. Duke Math. J. 159 (2011) 351-383. | MR | Zbl
and ,[23] Probability in Banach Spaces. Springer (1991). | MR | Zbl
and ,[24] Hölder regularity of the SLE trace. Trans. Amer. Math. Soc. 360 (2008) 3557-3578. | MR | Zbl
,[25] Stable and multistable processes and localisability. Ph.D. thesis of the University of St. Andrews (2010). | Zbl
,[26] Markov Processes, Gaussian Processes and Local Times. Cambridge University Press (2006). | MR | Zbl
and ,[27] Fernique-type inequalities and moduli of continuity of anisotropic Gaussian random fields. Trans. Amer. Math. Soc. 365 (2013) 1081-1107. | MR
, and ,[28] Local times of multifractional Brownian sheets. Bernoulli, 14 (2008) 865-898. | MR | Zbl
, and ,[29] Sample functions of the N-parameter Wiener process. Ann. Probab. 1 (1973) 138-163. | MR | Zbl
and ,[30] Multifractional brownian motion: Definition and preliminary results. Rapport de recherche INRIA (RR-2645) (1995) 39.
and ,[31] The Hausdorff dimension of the range of a process with stationary independent increments. J. Math. Mech. 19 (1969) 371-378. | MR | Zbl
,[32] How rich is the class of multifractional Brownian motions? Stoch. Proc. Appl. 116 (2006) 200-221. | MR | Zbl
and ,[33] An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964) 211-226. | MR | Zbl
,[34] The α-dimensional measure of the graph and set of zeroes of a Brownian path, Math. Proc. Cambridge Philos. Soc. 51 (1955) 265-274. | MR | Zbl
,[35] Sample path properties of bifractional Brownian motion. Bernoulli 13 (2007) 1023-1052. | MR | Zbl
and ,[36] Geometric properties of fractional Brownian sheets. J. Fourier Anal. Appl. 13 (2007) 1-37. | MR | Zbl
and ,[37] Dimension results for Gaussian vector fields and index-α stable fields. Ann. Probab. 23 (1995) 273-291. | MR | Zbl
,[38] Sample path properties of anisotropic Gaussian random fields, in A Minicourse on Stochastic Partial Differential Equations. Edited by D. Khoshnevisan and F. Rassoul-Agha. Springer, New York. Lect. Notes Math. 1962 (2009) 145-212. | MR | Zbl
,[39] On uniform modulus of continuity of random fields. Monatsh. Math. 159 (2010) 163-184. | MR | Zbl
,[40] Local properties of sample functions of random fields. Selected translations in Mathematics, Statistics and probab. 10 (1971) 233-245. | Zbl
,[41] The Hausdorff dimensions of the graph and range of the N-parameter Brownian motion in d-space. Ann. Probab. 3 169-171, 1975. | MR | Zbl
,Cité par Sources :