Consider an irreducible, aperiodic and positive recurrent discrete time Markov chain (Xn,n ≥ 0) with invariant distribution μ. We shall investigate the long time behaviour of some functionals of the chain, in particular the additive functional S n = ∑ i = 1 n f ( X i ) for a possibly non square integrable function f. To this end we shall link ergodic properties of the chain to mixing properties, extending known results in the continuous time case. We will then use existing results of convergence to stable distributions, obtained in [M. Denker and A. Jakubowski, Stat. Probab. Lett. 8 (1989) 477-483; M. Tyran-Kaminska, Stochastic Process. Appl. 120 (2010) 1629-1650; D. Krizmanic, Ph.D. thesis (2010); B. Basrak, D. Krizmanic and J. Segers, Ann. Probab. 40 (2012) 2008-2033] for stationary mixing sequences. Contrary to the usual L^2 L 2 framework studied in [P. Cattiaux, D. Chafai and A. Guillin, ALEA, Lat. Am. J. Probab. Math. Stat. 9 (2012) 337-382], where weak forms of ergodicity are sufficient to ensure the validity of the Central Limit Theorem, we will need here strong ergodic properties: the existence of a spectral gap, hyperboundedness (or hypercontractivity). These properties are also discussed. Finally we give explicit examples.
Mots-clés : Markov chains, stable limit theorems, stable distributions, log-Sobolev inequality, additive functionals, functional limit theorem
@article{PS_2014__18__468_0, author = {Cattiaux, Patrick and Manou-Abi, Mawaki}, title = {Limit theorems for some functionals with heavy tails of a discrete time {Markov} chain}, journal = {ESAIM: Probability and Statistics}, pages = {468--482}, publisher = {EDP-Sciences}, volume = {18}, year = {2014}, doi = {10.1051/ps/2013043}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2013043/} }
TY - JOUR AU - Cattiaux, Patrick AU - Manou-Abi, Mawaki TI - Limit theorems for some functionals with heavy tails of a discrete time Markov chain JO - ESAIM: Probability and Statistics PY - 2014 SP - 468 EP - 482 VL - 18 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2013043/ DO - 10.1051/ps/2013043 LA - en ID - PS_2014__18__468_0 ER -
%0 Journal Article %A Cattiaux, Patrick %A Manou-Abi, Mawaki %T Limit theorems for some functionals with heavy tails of a discrete time Markov chain %J ESAIM: Probability and Statistics %D 2014 %P 468-482 %V 18 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2013043/ %R 10.1051/ps/2013043 %G en %F PS_2014__18__468_0
Cattiaux, Patrick; Manou-Abi, Mawaki. Limit theorems for some functionals with heavy tails of a discrete time Markov chain. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 468-482. doi : 10.1051/ps/2013043. http://www.numdam.org/articles/10.1051/ps/2013043/
[1] Sur les inégalités de Sobolev logarithmiques. Vol. 10 of Panoramas et Synthèses. Société Mathématique de France, Paris (2000). | Zbl
, , , , , , and ,[2] Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Func. Anal. 254 (2008) 727-759. | MR | Zbl
, and ,[3] Stable limits for sums of dependent infinite variance random variables. Probab. Theory Relat. Fields 150 (2011) 337-372. | MR | Zbl
, , and ,[4] A functional limit theorem for dependent sequences with infinite variance stable limits. Ann. Probab. 40 (2012) 2008-2033. | MR | Zbl
, and ,[5] A pathwise approach of some classical inequalities. Potential Analysis 20 (2004) 361-394. | MR | Zbl
,[6] Central Limit Theorem for additive functionals of ergodic Markov Diffusions. ALEA, Lat. Am. J. Probab. Math. Stat. 9 (2012) 337-382. | MR | Zbl
, and ,[7] Deviation bounds for additive functionals of Markov processes. ESAIM: PS 12 (2008) 12-29. | Numdam | MR | Zbl
and ,[8] Trends to equilibrium in total variation distance. Ann. Inst. Henri Poincaré. Prob. Stat. 45 (2009) 117-145. | Numdam | MR | Zbl
and ,[9] Poincaré inequality and the ?p convergence of semi-groups. Elec. Commun. Prob. 15 (2010) 270-280. | MR | Zbl
, and ,[10] Poincaré inequalities and hitting times. Ann. Inst. Henri Poincaré. Prob. Stat. 49 (2013) 95-118. | Numdam | MR | Zbl
, and ,[11] Eigenvalues, inequalities, and ergodic theory. Probab. Appl. (New York). Springer-Verlag London Ltd., London (2005). | MR | Zbl
,[12] Stable limits for partial sums of dependent random variables. Ann. Probab. 11 (1983) 262-269. | MR | Zbl
,[13] Stable limit theorems for strongly mixing sequences. Stat. Probab. Lett. 8 (1989) 477-483. | MR | Zbl
and ,[14] Minimal conditions in p-stable limit theorem. Stochastic Process. Appl. 44 (1993) 291-327. | MR | Zbl
,[15] Limit theorems for additive functionals of a Markov chain. Ann. Appl. Probab. 19 (2009) 2270-2300. | MR | Zbl
, and ,[16] Functional limit theorems for weakly dependent regularly varying time series. Ph.D. thesis (2010). Available at http://www.math.uniri.hr/˜dkrizmanic/DKthesis.pdf.
,[17] Markov chains and stochastic stability. Commun. Control Eng. Series. Springer-Verlag London Ltd., London (1993). | MR | Zbl
and ,[18] Recent advances in invariance principles for stationary sequences. Probab. Surv. 3 (2006) 1-36. | MR | Zbl
, and ,[19] On hyperboundedness and spectrum of Markov operators. Preprint, available on hal-00777146 (2013).
,[20] Weak Poincaré inequalities and L2-convergence rates of Markov semi-groups. J. Funct. Anal. 185 (2001) 564-603. | Zbl
and ,[21] Convergence to Lévy stable processes under some weak dependence conditions. Stochastic Process. Appl. 120 (2010) 1629-1650. | MR | Zbl
,[22] Geometric ergodicity and quasi-stationnarity in discrete time Birth-Death processes. J. Austral. Math. Soc. Ser. B 37 (1995) 121-144. | MR | Zbl
and ,Cité par Sources :