Random coefficients bifurcating autoregressive processes
ESAIM: Probability and Statistics, Tome 18 (2014), pp. 365-399.

This paper presents a new model of asymmetric bifurcating autoregressive process with random coefficients. We couple this model with a Galton-Watson tree to take into account possibly missing observations. We propose least-squares estimators for the various parameters of the model and prove their consistency, with a convergence rate, and asymptotic normality. We use both the bifurcating Markov chain and martingale approaches and derive new results in both these frameworks.

DOI : 10.1051/ps/2013042
Classification : 60J05, 60J80, 62M05, 62F12, 60G42, 92D25
Mots clés : autoregressive process, branching process, missing data, least squares estimation, limit theorems, bifurcating Markov chain, martingale
@article{PS_2014__18__365_0,
     author = {Saporta, Beno{\^\i}te de and G\'egout-Petit, Anne and Marsalle, Laurence},
     title = {Random coefficients bifurcating autoregressive processes},
     journal = {ESAIM: Probability and Statistics},
     pages = {365--399},
     publisher = {EDP-Sciences},
     volume = {18},
     year = {2014},
     doi = {10.1051/ps/2013042},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2013042/}
}
TY  - JOUR
AU  - Saporta, Benoîte de
AU  - Gégout-Petit, Anne
AU  - Marsalle, Laurence
TI  - Random coefficients bifurcating autoregressive processes
JO  - ESAIM: Probability and Statistics
PY  - 2014
SP  - 365
EP  - 399
VL  - 18
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2013042/
DO  - 10.1051/ps/2013042
LA  - en
ID  - PS_2014__18__365_0
ER  - 
%0 Journal Article
%A Saporta, Benoîte de
%A Gégout-Petit, Anne
%A Marsalle, Laurence
%T Random coefficients bifurcating autoregressive processes
%J ESAIM: Probability and Statistics
%D 2014
%P 365-399
%V 18
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2013042/
%R 10.1051/ps/2013042
%G en
%F PS_2014__18__365_0
Saporta, Benoîte de; Gégout-Petit, Anne; Marsalle, Laurence. Random coefficients bifurcating autoregressive processes. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 365-399. doi : 10.1051/ps/2013042. http://www.numdam.org/articles/10.1051/ps/2013042/

[1] V. Bansaye, Proliferating parasites in dividing cells: Kimmel's branching model revisited. Ann. Appl. Probab. 18 (2008) 967-996. | MR | Zbl

[2] I.V. Basawa and J. Zhou, Non-Gaussian bifurcating models and quasi-likelihood estimation. J. Appl. Probab. A 41 (2004) 55-64. | MR | Zbl

[3] B. Bercu, B. De Saporta and A. Gégout-Petit, Asymptotic analysis for bifurcating autoregressive processes via a martingale approach. Electron. J. Probab. 14 (2009) 2492-2526. | MR | Zbl

[4] V. Blandin, Asymptotic results for bifurcating random coefficient autoregressive processes (2012). Preprint ArXiv: 1204.2926.

[5] A. Brandt, The stochastic equation Yn + 1 = AnYn + Bn with stationary coefficients. Adv. Appl. Probab. 18 (1986) 211-220. | MR | Zbl

[6] Q.M. Bui and R.M. Huggins, Inference for the random coefficients bifurcating autoregressive model for cell lineage studies. J. Statist. Plann. Inference 81 (1999) 253-262. | MR | Zbl

[7] R. Cowan and R.G. Staudte, The bifurcating autoregressive model in cell lineage studies. Biometrics 42 (1986) 769-783. | Zbl

[8] B. De Saporta, Tail of the stationary solution of the stochastic equation Yn + 1 = anYn + bn with Markovian coefficients. Stochastic Process. Appl. 115 (2005) 1954-1978. | MR | Zbl

[9] B. De Saporta, A. Gégout-Petit and L. Marsalle, Parameters estimation for asymmetric bifurcating autoregressive processes with missing data. Electron. J. Stat. 5 (2011) 1313-1353. | MR | Zbl

[10] B. De Saporta, A. Gégout Petit and L. Marsalle, Asymmetry tests for bifurcating autoregressive processes with missing data. Stat. Probab. Lett. 82 (2012) 1439-1444. | MR | Zbl

[11] J.-F. Delmas and L. Marsalle, Detection of cellular aging in a Galton-Watson process. Stoch. Process. Appl. 120 (2010) 2495-2519. | MR | Zbl

[12] M. Duflo, Random iterative models, Applications of Mathematics, vol. 34. Springer-Verlag, Berlin (1997). | MR | Zbl

[13] J. Guyon, Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann. Appl. Probab. 17 (2007) 1538-1569. | MR | Zbl

[14] J. Guyon, A. Bize, G. Paul, E. Stewart, J.-F. Delmas and F. Taddéi, Statistical study of cellular aging, in CEMRACS 2004, mathematics and applications to biology and medicine, vol. 14, ESAIM: Proc. EDP Sci., Les Ulis (2005) 100-114 (electronic). | MR | Zbl

[15] P. Hall and C.C. Heyde, Martingale limit theory and its application. Probability and Mathematical Statistics. Academic Press Inc., New York (1980). | MR | Zbl

[16] J.D. Hamilton, Time series analysis. Princeton University Press, Princeton, NJ (1994). | MR | Zbl

[17] T.E. Harris, The theory of branching processes. Die Grundlehren der Mathematischen Wissenschaften, Bd. 119. Springer-Verlag, Berlin (1963). | MR | Zbl

[18] R.M. Huggins, Robust inference for variance components models for single trees of cell lineage data. Ann. Statist. 24 (1996) 1145-1160. | MR | Zbl

[19] R.M. Huggins and I.V. Basawa, Extensions of the bifurcating autoregressive model for cell lineage studies. J. Appl. Probab. 36 (1999) 1225-1233. | MR | Zbl

[20] R.M. Huggins and I.V. Basawa, Inference for the extended bifurcating autoregressive model for cell lineage studies. Aust. N. Z. J. Stat. 42 (2000) 423-432. | MR | Zbl

[21] R.M. Huggins and R.G. Staudte, Variance components models for dependent cell populations. J. AMS 89 (1994) 19-29. | Zbl

[22] S.Y. Hwang and I.V. Basawa, Branching Markov processes and related asymptotics. J. Multivariate Anal. 100 (2009) 1155-1167. | MR | Zbl

[23] S.Y. Hwang and I.V. Basawa, Asymptotic optimal inference for multivariate branching-Markov processes via martingale estimating functions and mixed normality. J. Multivariate Anal. 102 (2011) 1018-1031. | MR | Zbl

[24] Nicholls, D. F., and Quinn, B. G. Random coefficient autoregressive models: an introduction. In vol. 11, Lect. Notes Statist. Springer-Verlag, New York (1982). | MR | Zbl

[25] E. Stewart, R. Madden, G. Paul and F. Taddei, Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol. 3 (2005) e45.

[26] C.Z. Wei, Adaptive prediction by least squares predictors in stochastic regression models with applications to time series. Ann. Statist. 15 (1987) 1667-1682. | MR | Zbl

[27] J. Zhou and I.V. Basawa, Least-squares estimation for bifurcating autoregressive processes. Statist. Probab. Lett. 74 (2005) 77-88. | MR | Zbl

[28] J. Zhou and I.V. Basawa, Maximum likelihood estimation for a first-order bifurcating autoregressive process with exponential errors. J. Time Ser. Anal. 26 (2005) 825-842. | MR | Zbl

Cité par Sources :