Many mathematical models involve input parameters, which are not precisely known. Global sensitivity analysis aims to identify the parameters whose uncertainty has the largest impact on the variability of a quantity of interest (output of the model). One of the statistical tools used to quantify the influence of each input variable on the output is the Sobol sensitivity index. We consider the statistical estimation of this index from a finite sample of model outputs: we present two estimators and state a central limit theorem for each. We show that one of these estimators has an optimal asymptotic variance. We also generalize our results to the case where the true output is not observable, and is replaced by a noisy version.
Mots-clés : sensitivity analysis, sobol indices, asymptotic efficiency, asymptotic normality, confidence intervals, metamodelling, surface response methodology
@article{PS_2014__18__342_0, author = {Janon, Alexandre and Klein, Thierry and Lagnoux, Agn\`es and Nodet, Ma\"elle and Prieur, Cl\'ementine}, title = {Asymptotic normality and efficiency of two {Sobol} index estimators}, journal = {ESAIM: Probability and Statistics}, pages = {342--364}, publisher = {EDP-Sciences}, volume = {18}, year = {2014}, doi = {10.1051/ps/2013040}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2013040/} }
TY - JOUR AU - Janon, Alexandre AU - Klein, Thierry AU - Lagnoux, Agnès AU - Nodet, Maëlle AU - Prieur, Clémentine TI - Asymptotic normality and efficiency of two Sobol index estimators JO - ESAIM: Probability and Statistics PY - 2014 SP - 342 EP - 364 VL - 18 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2013040/ DO - 10.1051/ps/2013040 LA - en ID - PS_2014__18__342_0 ER -
%0 Journal Article %A Janon, Alexandre %A Klein, Thierry %A Lagnoux, Agnès %A Nodet, Maëlle %A Prieur, Clémentine %T Asymptotic normality and efficiency of two Sobol index estimators %J ESAIM: Probability and Statistics %D 2014 %P 342-364 %V 18 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2013040/ %R 10.1051/ps/2013040 %G en %F PS_2014__18__342_0
Janon, Alexandre; Klein, Thierry; Lagnoux, Agnès; Nodet, Maëlle; Prieur, Clémentine. Asymptotic normality and efficiency of two Sobol index estimators. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 342-364. doi : 10.1051/ps/2013040. http://www.numdam.org/articles/10.1051/ps/2013040/
[1] Empirical model-building and response surfaces. John Wiley and Sons (1987). | MR | Zbl
and ,[2] R. Carnell, lhs: Latin Hypercube Samples (2009). R package version 0.5.
[3] Analytical variance-based global sensitivity analysis in simulation-based design under uncertainty. Vol. 127 of Transactions-American Society Of Mechanical Engineers Journal Of Mechanical Design (2005).
, and ,[4] Nonlinear sensitivity analysis of multiparameter model systems. J. Comput. Phys. 26 (1978) 1-42. | MR | Zbl
, and ,[5] Efficient estimation of sensitivity indices. J. Nonparametric Statist. 25 (2013) 573-595. | MR
and ,[6] G.M. Dancik, mlegp: Maximum Likelihood Estimates of Gaussian Processes (2011). R package version 3.1.2.
[7] Nonparametric econometrics: The np package. J. Statist. Softw. 27 (2008). | Zbl
and ,[8] Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab. Eng. Syst. Saf. 91 (2006) 1175-1209.
, , and ,[9] Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52 (1996) 1-17.
and ,[10] Statistical estimation-asymptotic theory. Vol. 16 of Appl. Math. Springer−Verlag, New York (1981). | Zbl
and ,[11] An importance quantification technique in uncertainty analysis for computer models, in Proc. of First International Symposium on Uncertainty Modeling and Analysis, 1990. IEEE (1990) 398-403.
and ,[12] Certified reduced-basis solutions of viscous Burgers equations parametrized by initial and boundary values. ESAIM: M2AN 47 (2013) 317-348. | Numdam | MR | Zbl
, and ,[13] Uncertainties assessment in global sensitivity indices estimation from metamodels. Internat. J. Uncert. Quantification 4 (2014) 21-36. | MR
, and ,[14] Pracniques: further remarks on reducing truncation errors. Commun. ACM 8 (1965) 40.
,[15] Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation. J. Approx. Theory 70 (1992) 94-114. | MR | Zbl
and ,[16] Calculations of sobol indices for the gaussian process metamodel. Reliab. Eng. Syst. Saf. 94 (2009) 742-751.
, , and ,[17] Uncertainty and sensitivity analysis for crop models, in Chap. 4 of Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications. Edited by D. Wallach, D. Makowski and J. W. Jones. Elsevier (2006) 55-99.
, and ,[18] Automatic online tuning for fast gaussian summation, in Advances in Neural Information Processing Systems, NIPS (2008).
, , , and ,[19] Certified real-time solution of parametrized partial differential equations. Handbook Mater. Model. (2005) 1523-1558.
, and ,[20] R Development Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2011). ISBN 3-900051-07-0.
[21] An efficient cross-validation algorithm for window width selection for nonparametric kernel regression. Commun. Stat. Simul. Comput. 22 (1993) 1107-1107.
,[22] Sensitivity analysis. Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd., Chichester (2000). | MR | Zbl
, and ,[23] Sensitivity analysis in practice: a guide to assessing scientific models (2004). | MR | Zbl
, , and ,[24] The Design and Analysis of Computer Experiments. Springer−Verlag (2003). | MR | Zbl
, and ,[25] Mathematical results concerning kernel techniques. In Prep. 13th IFAC Symposium on System Identification, Rotterdam. Citeseer (2003) 1814-1819.
,[26] Interpolation of spatial data - a stochastic or a deterministic problem? Universität Göttingen (2011) http://num.math.uni-goettingen.de/schaback/research/papers/IoSD.pdf.
, and ,[27] Sensitivity estimates for nonlinear mathematical models. Math. Modeling Comput. Experiment 1 (1995) 407-414, 1993. | MR | Zbl
,[28] Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55 (2001) 271-280. | MR | Zbl
,[29] Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models. Reliab. Eng. Syst. Saf. 94 (2009) 1735-1763.
, , and ,[30] Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93 (2008) 964-979.
,[31] A bias correction method for the estimation of sensitivity indices based on random balance designs. Reliab. Eng. Syst. Saf. (2010).
and ,[32] Asymptotic statistics. Vol. 3 of Cambr. Series Statist. Probab. Math. Cambridge University Press, Cambridge (1998). | MR | Zbl
,Cité par Sources :