Survival probabilities of autoregressive processes
ESAIM: Probability and Statistics, Tome 18 (2014), pp. 145-170.

Given an autoregressive process X of order p (i.e. Xn = a1Xn-1 + ··· + apXn-p + Yn where the random variables Y1, Y2,... are i.i.d.), we study the asymptotic behaviour of the probability that the process does not exceed a constant barrier up to time N (survival or persistence probability). Depending on the coefficients a1,..., ap and the distribution of Y1, we state conditions under which the survival probability decays polynomially, faster than polynomially or converges to a positive constant. Special emphasis is put on AR(2) processes.

DOI : 10.1051/ps/2013031
Classification : 60G15, 60G50
Mots-clés : autoregressive process, autoregressive moving average, boundary crossing probability, one-sided exit problem, persistence probablity, survival probability
@article{PS_2014__18__145_0,
     author = {Baumgarten, Christoph},
     title = {Survival probabilities of autoregressive processes},
     journal = {ESAIM: Probability and Statistics},
     pages = {145--170},
     publisher = {EDP-Sciences},
     volume = {18},
     year = {2014},
     doi = {10.1051/ps/2013031},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2013031/}
}
TY  - JOUR
AU  - Baumgarten, Christoph
TI  - Survival probabilities of autoregressive processes
JO  - ESAIM: Probability and Statistics
PY  - 2014
SP  - 145
EP  - 170
VL  - 18
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2013031/
DO  - 10.1051/ps/2013031
LA  - en
ID  - PS_2014__18__145_0
ER  - 
%0 Journal Article
%A Baumgarten, Christoph
%T Survival probabilities of autoregressive processes
%J ESAIM: Probability and Statistics
%D 2014
%P 145-170
%V 18
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2013031/
%R 10.1051/ps/2013031
%G en
%F PS_2014__18__145_0
Baumgarten, Christoph. Survival probabilities of autoregressive processes. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 145-170. doi : 10.1051/ps/2013031. http://www.numdam.org/articles/10.1051/ps/2013031/

[1] F. Aurzada and C. Baumgarten, Survival probabilities of weighted random walks. ALEA Lat. Amer. J. Probab. Math. Stat. 8 (2011) 235-258. | MR | Zbl

[2] F. Aurzada and T. Simon, Persistence probabilities and exponents. arXiv:1203.6554 (2012).

[3] P.J. Brockwell and R.A. Davis, Time series: theory and methods. Springer Series in Statistics. Springer-Verlag, New York (1987). | MR | Zbl

[4] A. Dembo, J. Ding and F. Gao, Persistence of iterated partial sums. Ann. Inst. Henri Poincaré B. To appear (2012). | Numdam | MR | Zbl

[5] A. Dembo, B. Poonen, Q.-M. Shao and O. Zeitouni, Random polynomials having few or no real zeros. J. Amer. Math. Soc. 15 857-892 (2002). Electronic. | MR | Zbl

[6] R.A. Doney, On the asymptotic behaviour of first passage times for transient random walk. Probab. Theory Related Fields 81 (1989) 239-246,. | MR | Zbl

[7] S.N. Elaydi, An introduction to difference equations. Undergraduate Texts in Mathematics. Second edition, Springer-Verlag, New York (1999). | MR | Zbl

[8] J.D. Esary, F. Proschan and D.W. Walkup, Association of random variables, with applications. Ann. Math. Statist. 38 (1967) 1466-1474. | MR | Zbl

[9] W. Feller, An introduction to probability theory and its applications. Second edition, John Wiley and Sons Inc., New York (1971). | MR | Zbl

[10] G.R. Grimmett and D.R. Stirzaker, One thousand exercises in probability. Oxford University Press, Oxford (2001). | MR | Zbl

[11] M. Ledoux and M. Talagrand, Probability in Banach spaces. Springer-Verlag, Berlin Heidelberg New York (1991). | MR | Zbl

[12] W.V. Li and Q.-M. Shao, Recent developments on lower tail probabilities for Gaussian processes. Cosmos 1 (2005) 95-106. | MR

[13] E. Lukacs, Characteristic functions. Second edition, revised and enlarged. Hafner Publishing Co., New York (1970). | MR | Zbl

[14] A. Novikov and N. Kordzakhia, Martingales and first passage times of AR(1) sequences. Stochast. 80 (2008) 197-210. | MR | Zbl

[15] Y. Peres, W. Schlag and B. Solomyak, Sixty years of Bernoulli convolutions. In Fractal geometry and stochastics, II (Greifswald/Koserow, 1998), vol. 46 of Progr. Probab. Birkhäuser, Basel (2000) 39-65. | MR | Zbl

[16] Ya. G. Sinaĭ, Statistics of shocks in solutions of inviscid Burgers equation. Commun. Math. Phys. 148 (1992) 601-621. | MR | Zbl

Cité par Sources :