In this paper we consider a smoothness parameter estimation problem for a density function. The smoothness parameter of a function is defined in terms of Besov spaces. This paper is an extension of recent results (K. Dziedziul, M. Kucharska, B. Wolnik, Estimation of the smoothness parameter). The construction of the estimator is based on wavelets coefficients. Although we believe that the effective estimation of the smoothness parameter is impossible in general case, we can show that it becomes possible for some classes of the density functions.
Mots-clés : estimation, wavelets, Besov spaces, smoothness parameter
@article{PS_2014__18__130_0, author = {Dziedziul, Karol and \'Cmiel, Bogdan}, title = {Density smoothness estimation problem using a wavelet approach}, journal = {ESAIM: Probability and Statistics}, pages = {130--144}, publisher = {EDP-Sciences}, volume = {18}, year = {2014}, doi = {10.1051/ps/2013030}, mrnumber = {3143736}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2013030/} }
TY - JOUR AU - Dziedziul, Karol AU - Ćmiel, Bogdan TI - Density smoothness estimation problem using a wavelet approach JO - ESAIM: Probability and Statistics PY - 2014 SP - 130 EP - 144 VL - 18 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2013030/ DO - 10.1051/ps/2013030 LA - en ID - PS_2014__18__130_0 ER -
%0 Journal Article %A Dziedziul, Karol %A Ćmiel, Bogdan %T Density smoothness estimation problem using a wavelet approach %J ESAIM: Probability and Statistics %D 2014 %P 130-144 %V 18 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2013030/ %R 10.1051/ps/2013030 %G en %F PS_2014__18__130_0
Dziedziul, Karol; Ćmiel, Bogdan. Density smoothness estimation problem using a wavelet approach. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 130-144. doi : 10.1051/ps/2013030. http://www.numdam.org/articles/10.1051/ps/2013030/
[1] Empirical Bayesian Test of the Smoothness. Math. Methods Stat. 17 (2008) 1-18. | MR | Zbl
and ,[2] A Smirnov-Bickel-Rosenblatt theorem for compactly-supported wavelets. Constructive Approximation 37 (2013) 295-309. | MR
,[3] Honest adaptive confidence bands and self-similar functions. Electron. J. Stat. 6 (2012) 1490-1516. | MR | Zbl
,[4] Adaptive Wavelet Estimation: A Block Thresholding and Oracle Inequality Approach. Ann. Stat. 27 (1999) 898-924. | MR | Zbl
,[5] An adaptation theory for nonparametric confidence intervals. Ann. Stat. 32 5 (2004) 1805-1840. | MR | Zbl
and ,[6] Adaptive confidence balls. Ann. Stat. 34 (2006) 202-228. | MR | Zbl
and ,[7] Block thresholding for density estimation: local and global adaptivity. J. Multivariate Anal. 95 (2005) 76-106. | MR | Zbl
and ,[8] Ten lectures on wavelets. SIAM Philadelphia (1992). | MR | Zbl
,[9] Minimax estimation via wavelet shrinkage. Ann. Stat. 26 (1996) 879-921. | MR | Zbl
and ,[10] Density estimation by wavelet thresholding. Ann. Stat. 24 (1996) 508-539. | MR | Zbl
, , and ,[11] Estimation of the smoothness parameter. J. Nonparametric Stat. 23 (2011) 991-1001. | MR | Zbl
, and ,[12] Confidence bands in density estimation. Ann. Stat. 38 (2010) 1122-1170. | MR | Zbl
and ,[13] Nonparametric reconstruction of a multifractal function from noisy data. Probab. Theory Relat. Fields 146 (2010) 155187. | MR | Zbl
and ,[14] Adaptive M-Estimation in Nonparametric Regression. Ann. Stat. 18 (1990) 1712-1728. | MR | Zbl
and ,[15] Wavelets, Approximation and Statistical Applications. Springer-Verlag, New York (1998). | MR | Zbl
, , and ,[16] On adaptive inference and confidence bands. Ann. Stat. 39 (2011) 2383-2409. | MR | Zbl
and ,[17] Change-point detection with non parametric regression. Statistics: A J. Theoret. Appl. Stat. 36 (2002) 9-31. | MR | Zbl
and ,[18] Estimation and detection of functions from anisotropic Sobolev classes. Electron. J. Stat. 5 (2011) 484-506. | MR | Zbl
and ,[19] Conjecture de Frisch et Parisi et généricité des fonctions multifractales. C. R. Acad. Sci. Paris Sér. I Math. 330 4 (2000) 265-270. | MR | Zbl
,[20] On nonparametric confidence intervals. Ann. Stat. 25 (1997) 2547-2554. | MR | Zbl
,[21] Wavelets and operators. In Cambridge Stud. Advanc. Math. of vol. 37. Translated from the 1990 French original by D.H. Salinger. Cambridge University Press, Cambridge. (1992). | MR | Zbl
,[22] Spline bases in Besov spaces. Bull. Acad. Pol. Sci. Serie Math. astr. Phys. 24 (1976) 319-325. | MR | Zbl
,[23] A Reliable Data-Based Bandwidth Selection Method for Kernel Density Estimation. J. Royal Stat. Soc. Ser. B. 53 (1991) 683-690. | MR | Zbl
and ,Cité par Sources :