We consider stationary processes with long memory which are non-Gaussian and represented as Hermite polynomials of a Gaussian process. We focus on the corresponding wavelet coefficients and study the asymptotic behavior of the sum of their squares since this sum is often used for estimating the long-memory parameter. We show that the limit is not Gaussian but can be expressed using the non-Gaussian Rosenblatt process defined as a Wiener-Itô integral of order 2. This happens even if the original process is defined through a Hermite polynomial of order higher than 2.
Mots-clés : Hermite processes, wavelet coefficients, wiener chaos, self-similar processes, long-range dependence
@article{PS_2014__18__42_0, author = {Clausel, M. and Roueff, F. and Taqqu, M. S. and Tudor, C.}, title = {Wavelet estimation of the long memory parameter for {Hermite} polynomial of gaussian processes}, journal = {ESAIM: Probability and Statistics}, pages = {42--76}, publisher = {EDP-Sciences}, volume = {18}, year = {2014}, doi = {10.1051/ps/2012026}, mrnumber = {3143733}, zbl = {1310.42023}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2012026/} }
TY - JOUR AU - Clausel, M. AU - Roueff, F. AU - Taqqu, M. S. AU - Tudor, C. TI - Wavelet estimation of the long memory parameter for Hermite polynomial of gaussian processes JO - ESAIM: Probability and Statistics PY - 2014 SP - 42 EP - 76 VL - 18 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2012026/ DO - 10.1051/ps/2012026 LA - en ID - PS_2014__18__42_0 ER -
%0 Journal Article %A Clausel, M. %A Roueff, F. %A Taqqu, M. S. %A Tudor, C. %T Wavelet estimation of the long memory parameter for Hermite polynomial of gaussian processes %J ESAIM: Probability and Statistics %D 2014 %P 42-76 %V 18 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2012026/ %R 10.1051/ps/2012026 %G en %F PS_2014__18__42_0
Clausel, M.; Roueff, F.; Taqqu, M. S.; Tudor, C. Wavelet estimation of the long memory parameter for Hermite polynomial of gaussian processes. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 42-76. doi : 10.1051/ps/2012026. http://www.numdam.org/articles/10.1051/ps/2012026/
[1] Wavelet-based synthesis of the Rosenblatt process. Eurasip Signal Processing 86 (2006) 2326-2339. | Zbl
and ,[2] Wavelet analysis of long-range-dependent traffic. IEEE Trans. Inform. Theory 44 (1998) 2-15. | MR | Zbl
and ,[3] Long-range dependence: revisiting aggregation with wavelets. J. Time Ser. Anal. 19 (1998) 253-266. ISSN 0143-9782. | MR | Zbl
, and ,[4] Wavelet-based analysis of non-Gaussian long-range dependent processes and estimation of the Hurst parameter. Lithuanian Math. J. 51 (2011) 287-302. | MR | Zbl
, and ,[5] Statistical study of the wavelet analysis of fractional Brownian motion. IEEE Trans. Inform. Theory 48 (2002) 991-999. | MR | Zbl
,[6] A wavelet analysis of the Rosenblatt process: chaos expansion and estimation of the self-similarity parameter. Stochastic Process. Appl. 120 (2010) 2331-2362. | MR | Zbl
and ,[7] Wavelet estimator of long-range dependent processes. 19th “Rencontres Franco-Belges de Statisticiens” (Marseille, 1998). Stat. Inference Stoch. Process. 3 (2000) 85-99. | MR | Zbl
, , and ,[8] Adaptive wavelet based estimator of the memory parameter for stationary gaussian processes. Bernoulli 14 (2008) 691-724. | MR | Zbl
, and ,[9] Error bounds on the non-normal approximation of hermite power variations of fractional brownian motion. Electron. Commun. Probab. 13 (2008) 482-493. | EuDML | MR | Zbl
and ,[10] Self-similarity parameter estimation and reproduction property for non-gaussian Hermite processes. Commun. Stoch. Anal. 5 (2011) 161-185. | MR
, and ,[11] Large scale behavior of wavelet coefficients of non-linear subordinated processes with long memory. Appl. Comput. Harmonic Anal. 32 (2012) 223-241. | MR | Zbl
, , and ,[12] High order chaotic limits of wavelet scalograms under long-range dependence. Technical report, Hal-Institut Telecom (2012). http://hal-institut-telecom.archives-ouvertes.fr/hal-00662317. | MR | Zbl
, , and ,[13] Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 (1979) 27-52. | MR | Zbl
and ,[14] Selfsimilar processes. Princeton University Press, Princeton, New York (2002). | MR | Zbl
and ,[15] On the spectrum of fractional Brownian motions. IEEE Trans. Inform. Theory IT-35 (1989) 197-199. | MR
,[16] Some aspects of nonstationary signal processing with emphasis on time-frequency and time-scale methods. Edited by J.M. Combes, A. Grossman and Ph. Tchamitchian, Wavelets. Springer-Verlag (1989) 68-98. | MR | Zbl
,[17] Fractional Brownian motion and wavelets. Edited by M. Farge, J.C.R. Hung and J.C. Vassilicos, Fractals and Fourier Transforms-New Developments and New Applications. Oxford University Press (1991). | MR | Zbl
,[18] Time-Frequency/Time-scale Analysis, 1st edition. Academic Press (1999). | MR | Zbl
,[19] Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Ann. Statist. 14 (1986) 517-532. | MR | Zbl
and .[20] Central limit theorems and other limit theorems for functionals of gaussian processes. Z. Wahrsch. verw. Gebiete 70 (1985) 191-212. | MR | Zbl
and ,[21] Whittle estimator for finite-variance non-gaussian time series with long memory. Ann. Statist. 27 (1999) 178-203. | MR | Zbl
and ,[22] Stochastic modelling of riverflow time series. J. Roy. Statist. Soc. Ser. A 140 (1977) 1-47.
and ,[23] Multiple Wiener-Itô integrals, vol. 849 of Lect. Notes Math. Springer, Berlin (1981). | MR | Zbl
,[24] On the spectral density of the wavelet coefficients of long memory time series with application to the log-regression estimation of the memory parameter. J. Time Ser. Anal. 28 (2007) 155-187. | MR | Zbl
, and ,[25] Stein's method meets Malliavin calculus: a short survey with new estimates. Technical report, Recent Advances in Stochastic Dynamics and Stochastic Analysis 8 (2010) 207-236. | MR | Zbl
and ,[26] Stein's method on wiener chaos. Probability Theory and Related Fields 154 (2009) 75-118. | MR | Zbl
and ,[27] The Malliavin Calculus and Related Topics. Springer (2006). | MR | Zbl
,[28] Log-periodogram regression of time series with long range dependence. Ann. Statist. 23 (1995) 1048-1072. | MR | Zbl
,[29] Gaussian semiparametric estimation of long range dependence. Ann. Statist. 23 (1995) 1630-1661. | MR | Zbl
,[30] Central limit theorems for arrays of decimated linear processes. Stoch. Proc. Appl. 119 (2009) 3006-3041. | MR | Zbl
and ,[31] Asymptotic normality of wavelet estimators of the memory parameter for linear processes. J. Time Ser. Anal. 30 (2009) 534-558. | MR | Zbl
and ,[32] Analyses statistiques des communications sur puce. Ph.D. thesis, École normale supérieure de Lyon (2006). Available on http://www.ens-lyon.fr/LIP/Pub/Rapports/PhD/PhD2006/PhD2006-09.pdf.
,[33] A representation for self-similar processes. Stoch. Proc. Appl. 7 (1978) 55-64. | MR | Zbl
,[34] Central limit theorems and other limit theorems for functionals of gaussian processes. Z. Wahrsch. verw. Gebiete 70 (1979) 191-212. | Zbl
,[35] Estimation of fractal signals from noisy measurements using wavelets. IEEE Trans. Signal Process. 40 (1992) 611-623.
and ,Cité par Sources :