In the present paper we prove moderate deviations for a Curie-Weiss model with external magnetic field generated by a dynamical system, as introduced by Dombry and Guillotin-Plantard in [C. Dombry and N. Guillotin-Plantard, Markov Process. Related Fields 15 (2009) 1-30]. The results extend those already obtained for the Curie-Weiss model without external field by Eichelsbacher and Löwe in [P. Eichelsbacher and M. Löwe, Markov Process. Related Fields 10 (2004) 345-366]. The Curie-Weiss model with dynamical external field is related to the so called dynamic ℤ-random walks (see [N. Guillotin-Plantard and R. Schott, Theory and applications, Elsevier B. V., Amsterdam (2006).]). We also prove a moderate deviation result for the dynamic ℤ-random walk, completing the list of limit theorems for this object.
Mots clés : moderate deviations, large deviations, statistical mechanics, Curie-Weiss model, dynamic random walks, ergodic theory
@article{PS_2013__17__725_0, author = {Reichenbachs, Anselm}, title = {Moderate deviations for a {Curie-Weiss} model with dynamical external field}, journal = {ESAIM: Probability and Statistics}, pages = {725--739}, publisher = {EDP-Sciences}, volume = {17}, year = {2013}, doi = {10.1051/ps/2012019}, mrnumber = {3126159}, zbl = {1290.60105}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2012019/} }
TY - JOUR AU - Reichenbachs, Anselm TI - Moderate deviations for a Curie-Weiss model with dynamical external field JO - ESAIM: Probability and Statistics PY - 2013 SP - 725 EP - 739 VL - 17 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2012019/ DO - 10.1051/ps/2012019 LA - en ID - PS_2013__17__725_0 ER -
%0 Journal Article %A Reichenbachs, Anselm %T Moderate deviations for a Curie-Weiss model with dynamical external field %J ESAIM: Probability and Statistics %D 2013 %P 725-739 %V 17 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2012019/ %R 10.1051/ps/2012019 %G en %F PS_2013__17__725_0
Reichenbachs, Anselm. Moderate deviations for a Curie-Weiss model with dynamical external field. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 725-739. doi : 10.1051/ps/2012019. http://www.numdam.org/articles/10.1051/ps/2012019/
[1] Multiple critical behavior of probabilistic limit theorems in the neighborhood of a tricritical point. J. Stat. Phys. 127 (2007) 495-552. | MR | Zbl
, and ,[2] Complete analysis of phase transitions and ensemble equivalence for the Curie-Weiss-Potts model. J. Math. Phys. 46 (2005) 063301. | MR | Zbl
, and ,[3] Large deviations techniques and applications Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin 38 (2010). Corrected reprint of the second edition (1998). | MR | Zbl
and ,[4] Large deviations for exchangeable random vectors. Ann. Probab. 20 (1992) 1147-1166. | MR | Zbl
and ,[5] The Curie-Weiss model with dynamical external field. Markov Process. Related Fields 15 (2009) 1-30. | MR | Zbl
and ,[6] A Weak Convergence Approach to the Theory of Large Deviations. Probab. Stat. John Wiley & Sons Inc., New York (1997). A Wiley-Interscience Publication. | MR | Zbl
and ,[7] Moderate deviations for a class of mean-field models. Markov Process. Related Fields 10 (2004) 345-366. | MR | Zbl
and ,[8] Entropy, large deviations, and statistical mechanics, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York 271 (1985). | MR | Zbl
,[9] Limit theorems for sums of dependent random variables occurring in statistical mechanics. Z. Wahrsch. Verw. Gebiete 44 (1978) 117-139. | MR | Zbl
and ,[10] Limit theorems for sums of dependent random variables occurring in statistical mechanics II. Conditioning, multiple phases, and metastability. Z. Wahrsch. Verw. Gebiete 51 (1980) 153-169. | MR | Zbl
, and ,[11] Metastates in mean-field models with random external fields generated by Markov chains. J. Stat. Phys. 146 (2012) 314-329. | MR | Zbl
, and ,[12] Dynamic random walks. Theory and applications. Elsevier B. V., Amsterdam (2006). | MR | Zbl
and ,[13] Moderate Deviations for Random Field Curie-Weiss Models. J. Stat. Phys. 149 (2012) 701-721. | MR | Zbl
and ,[14] Ergodic Theory, vol. 2 of Adv. Math. Cambridge University Press, Cambridge (1983). | MR | Zbl
,Cité par Sources :