Let ( S 1 , d S 1 ) be the unit circle in ℝ2 endowed with the arclength distance. We give a sufficient and necessary condition for a general probability measure μ to admit a well defined Fréchet mean on ( S 1 , d S 1 ). We derive a new sufficient condition of existence P(α, ϕ) with no restriction on the support of the measure. Then, we study the convergence of the empirical Fréchet mean to the Fréchet mean and we give an algorithm to compute it.
@article{PS_2013__17__635_0, author = {Charlier, Benjamin}, title = {Necessary and sufficient condition for the existence of a {Fr\'echet} mean on the circle}, journal = {ESAIM: Probability and Statistics}, pages = {635--649}, publisher = {EDP-Sciences}, volume = {17}, year = {2013}, doi = {10.1051/ps/2012015}, mrnumber = {3126155}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2012015/} }
TY - JOUR AU - Charlier, Benjamin TI - Necessary and sufficient condition for the existence of a Fréchet mean on the circle JO - ESAIM: Probability and Statistics PY - 2013 SP - 635 EP - 649 VL - 17 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2012015/ DO - 10.1051/ps/2012015 LA - en ID - PS_2013__17__635_0 ER -
%0 Journal Article %A Charlier, Benjamin %T Necessary and sufficient condition for the existence of a Fréchet mean on the circle %J ESAIM: Probability and Statistics %D 2013 %P 635-649 %V 17 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2012015/ %R 10.1051/ps/2012015 %G en %F PS_2013__17__635_0
Charlier, Benjamin. Necessary and sufficient condition for the existence of a Fréchet mean on the circle. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 635-649. doi : 10.1051/ps/2012015. http://www.numdam.org/articles/10.1051/ps/2012015/
[1] Riemannian Lp center of mass: existence, uniqueness, and convexity. Proc. Amer. Math. Soc. 139 (2011) 655-673. | MR | Zbl
,[2] Large sample theory of intrinsic and extrinsic sample means on manifolds, I. Ann. Stat. 31 (2003) 1-29. | MR | Zbl
and ,[3] Spherical averages and applications to spherical splines and interpolation. ACM Trans. Graph. 20 (2001) 95-126.
and ,[4] Riemannian barycentres and geodesic convexity. Math. Proc. Cambridge Philos. Soc. 127 (1999) 253-269. | MR | Zbl
and ,[5] Sur le barycentre d'une probabilité dans une variété, in Séminaire de Probabilités, XXV, vol. 1485 of Lect. Notes Math. (1991) 220-233. | EuDML | Numdam | MR | Zbl
and ,[6] Statistical analysis of circular data. Cambridge University Press, Cambridge (1993). | MR | Zbl
,[7] Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. Henri Poincaré 10 (1948) 215-310. | EuDML | Numdam | MR | Zbl
,[8] Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30 (1977) 509-541. | MR | Zbl
,[9] The karcher mean of a class of symmetric distributions on the circle. Stat. Probab. Lett. 78 (2008) 1314-1316 (2008). | MR | Zbl
and ,[10] Shape and shape theory. Wiley Series in Probability and Statistics. John Wiley & Sons Ltd., Chichester (1999). | MR | Zbl
, , and ,[11] On the consistency of procrustean mean shapes. Adv. Appl. Probab. 30 (1998) 53-63. | MR | Zbl
,[12] Locating Fréchet means with application to shape spaces. Adv. Appl. Probab. 33 (2001) 324-338. | MR | Zbl
,[13] Estimation of Riemannian barycentres. LMS J. Comput. Math. 7 (2004) 193-200. | MR | Zbl
,[14] Directional statistics. Wiley Series in Probability and Statistics. John Wiley & Sons Ltd., Chichester (2000). Revised reprint of ıt Statistics of directional data by Mardia [ MR0336854 (49 #1627)]. | MR | Zbl
and ,[15] The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18 (1990) 1269-1283. | MR | Zbl
,[16] Intrinsic analysis of statistical estimation. Ann. Statist. 23 (1995) 1562-1581. | MR | Zbl
and ,[17] Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. J. Math. Imaging Vision 25 (2006) 127-154. | MR
,[18] On expected figures and a strong law of large numbers for random elements in quasi-metric spaces, in Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes and of the Eighth European Meeting of Statisticians (Tech. Univ. Prague, Prague, 1974). Reidel, Dordrecht (1977) 591-602. | MR | Zbl
,Cité par Sources :