Wavelet analysis of the multivariate fractional brownian motion
ESAIM: Probability and Statistics, Tome 17 (2013), pp. 592-604.

The work developed in the paper concerns the multivariate fractional Brownian motion (mfBm) viewed through the lens of the wavelet transform. After recalling some basic properties on the mfBm, we calculate the correlation structure of its wavelet transform. We particularly study the asymptotic behaviour of the correlation, showing that if the analyzing wavelet has a sufficient number of null first order moments, the decomposition eliminates any possible long-range (inter)dependence. The cross-spectral density is also considered in a second part. Its existence is proved and its evaluation is performed using a von Bahr-Essen like representation of the function sign(t)|t|α. The behaviour of the cross-spectral density of the wavelet field at the zero frequency is also developed and confirms the results provided by the asymptotic analysis of the correlation.

DOI : 10.1051/ps/2012011
Classification : 26A16, 28A80, 42C40
Mots-clés : multivariate fractional brownian motion, wavelet analysis, cross-correlation, cross-spectrum
@article{PS_2013__17__592_0,
     author = {Coeurjolly, Jean-Fran\c{c}ois and Amblard, Pierre-Olivier and Achard, Sophie},
     title = {Wavelet analysis of the multivariate fractional brownian motion},
     journal = {ESAIM: Probability and Statistics},
     pages = {592--604},
     publisher = {EDP-Sciences},
     volume = {17},
     year = {2013},
     doi = {10.1051/ps/2012011},
     mrnumber = {3085634},
     zbl = {1293.42038},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2012011/}
}
TY  - JOUR
AU  - Coeurjolly, Jean-François
AU  - Amblard, Pierre-Olivier
AU  - Achard, Sophie
TI  - Wavelet analysis of the multivariate fractional brownian motion
JO  - ESAIM: Probability and Statistics
PY  - 2013
SP  - 592
EP  - 604
VL  - 17
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2012011/
DO  - 10.1051/ps/2012011
LA  - en
ID  - PS_2013__17__592_0
ER  - 
%0 Journal Article
%A Coeurjolly, Jean-François
%A Amblard, Pierre-Olivier
%A Achard, Sophie
%T Wavelet analysis of the multivariate fractional brownian motion
%J ESAIM: Probability and Statistics
%D 2013
%P 592-604
%V 17
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2012011/
%R 10.1051/ps/2012011
%G en
%F PS_2013__17__592_0
Coeurjolly, Jean-François; Amblard, Pierre-Olivier; Achard, Sophie. Wavelet analysis of the multivariate fractional brownian motion. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 592-604. doi : 10.1051/ps/2012011. http://www.numdam.org/articles/10.1051/ps/2012011/

[1] S. Achard, R. Salvador, B. Whitcher, J. Suckling and E. Bullmore, A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26 (2006) 63-72.

[2] S. Achard, D.S. Bassett, A. Meyer-Lindenberg and E. Bullmore, Fractal connectivity of long-memory networks. Phys. Rev. E 77 (2008) 036104.

[3] P.O. Amblard and J.F. Coeurjolly, Identification of the multivariate fractional Brownian motion. IEEE Trans. Signal Process. 59 (2011) 5152-5168. | MR

[4] P.O. Amblard, J.F. Coeurjolly, F. Lavancier and A. Philippe, Basic properties of the multivariate fractional Brownian motion, edited by L. Chaumont. Séminaires et Congrès, Self-similar processes and their applications 28 (2012) 65-87. | MR | Zbl

[5] S. Arianos and A. Carbone, Cross-correlation of long range correlated series. J. Stat. Mech. (2009) P033037.

[6] A. Ayache, S. Leger and M. Pontier, Drap brownien fractionnaire. Potential Anal. 17 (2002) 31-43. | MR | Zbl

[7] J.M. Bardet, G. Lang, E. Moulines and P. Soulier, Wavelet estimator of long-range dependent processes. Stat. Inference Stoch. Process. 3 (2000) 85-99. | MR | Zbl

[8] G. Chan and A.T.A. Wood, Simulation of stationary Gaussian vector fields. Stat. Comput. 9 (1999) 265-268.

[9] J.F. Coeurjolly, Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat. Inference Stoch. Process. 4 (2001) 199-227. | MR | Zbl

[10] G. Didier and V. Pipiras, Integral representations of operator fractional Brownian motions. Bernouilli 17 (2011) 1-33. | MR | Zbl

[11] G. Faÿ, E. Moulines, F. Roueff and M.S. Taqqu, Estimators of long-memory: Fourier versus wavelets. J. Econ. 151 (2009) 159-177. | MR

[12] P. Flandrin, On the spectrum of fractional Brownian motions. IEEE Trans. Inf. Theory 35 (1988) 197-199. | MR

[13] P. Flandrin, Wavelet analysis and synthesis of fractional Brownian motion. IEEE Trans. Inf. Theory 38 (1992) 910-917. | MR | Zbl

[14] I.M. Gel'Fand and G.E. Shilov, Generalized functions. Properties and Operations 1 (1964). | Zbl

[15] L.A. Gil-Alana, A fractional multivariate long memory model for the US and the Canadian real output. Econ. Lett. 81 (2003) 355-359. | Zbl

[16] T. Kato and E. Masry, On the spectral density of the wavelet transform of fractional Brownian motions. J. Time Ser. Anal. 20 (1999) 560-563. | MR | Zbl

[17] F. Lavancier, A. Philippe and D. Surgailis, Covariance function of vector self-similar processes. Stat. Probab. Lett. 79 (2009) 2415-2421. | MR | Zbl

[18] B. Mandelbrot and J. Van Ness, Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968) 422-437. | MR | Zbl

[19] R.F. Peltier and J. Lévy-Véhel, Multifractional Brownian motion: definition and preliminary results. Rapport Recherche INRIA (1995).

[20] A.H. Tewfik and M. Kim, Correlation structure of the discrete wavelet coefficients of fractional Brownian motion. IEEE Trans. Inf. Theory 38 (1992) 904-909. | MR | Zbl

[21] D. Veitch and P. Abry, Wavelet-based joint estimate of the long-range dependence parameters. IEEE Trans. Inf. Theory 45 (1999) 878-897. | MR | Zbl

[22] B. Von Bahr and C.G. Esseen, Inequalities for the rth absolute moment of a sum of random variables, 1 ≤ r ≤ 2. Ann. Math. Stat. 36 (1965) 299-303. | MR | Zbl

[23] G.W. Wornell, A Karhunen-Loève-like expansion for 1 / f processes via wavelets. IEEE Trans. Inf. Theory 36 (1990) 861-863.

Cité par Sources :